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bpm Beats Per Minute.

DFT Discrete Fourier Transform.

ECG electrocardiogram.

FFT Fast Fourier Transform.

HF High Frequency.

HR Heart Rate.

HRV Heart Rate Variability.

IRRR length of the interval determined by the first and the third quantile of the

∆RR time series.
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Chapter 1

Overview

It has been recognized in the past two decades that there is a significant relation-

ship between the Autonomic Nervous System (ANS) and cardiovascular mortality,

including sudden cardiac death. Experimental evidence for a connection between a

propensity for cardiac failure and either increased sympathetic or reduced parasym-

pathetic activity has encouraged the search of quantitative markers of autonomic

activity.

One of the most promising non-invasive markers is Heart Rate Variability (HRV).

HRV refers to the variation over time of both the intervals between consecutive

heart beats and the instantaneous Heart Rate (HR). As the heart rhythm is mod-

ulated by the ANS, HRV is thought to reflect the activity of the sympathetic and

parasympathetic branches of the ANS. The continuous modulation of the ANS

results in continuous variations in heart rate. HRV has been recognized to be a
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useful non-invasive tool as a predictor of several pathologies such as myocardial in-

farction, diabetic neuropathy, sudden cardiac death and ischemia, among others [17].

The existence of several software tools (Kubios HRV [32], the HRV toolkit for

MatLab [24] or aHRV [27], just to mention a few) have helped to popularize its use.

Some of these software packages are commercial and require the purchase of expen-

sive licenses (e.g., aHRV). Even although others are free, they require the purchase

of expensive commercial software on which they depend (e.g., the HRV toolkit for

MatLab). Kubios is free (though not open source), but it is based on a graphical

user interface, which makes it extremely tedious to perform systematic analyses of

a large database of recordings, as the user must manually load and analyze through

the user interface each recording. In this context, we have developed RHRV, an

open-source package for the statistical environment R [12], [13], [30], [34]. To the

best of our knowledge, RHRV is the only completely free and open source software

package for performing HRV analysis and that is based on scripting commands; thus

it enables the easy automation of analyses of a large number of recordings.

RHRV provides a complete set of tools for HRV analysis which can be used for devel-

oping new HRV analysis algorithms or for performing clinical experiments. Although

this software is mainly designed for the analysis of the HRV in humans, it may also

be used by animal researchers. Among the main characteristics of RHRV, we may

highlight:
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• RHRV can read heart rate data in multiple formats such as ASCII, Polar,

Suunto and WFDB.

• RHRV can compute the HRV time series from the beat positions as well as

preprocessing and filtering the HRV time series to eliminate outliers or spurious

points.

• RHRV includes functionality for the visualization and manipulation of the HRV

time series.

• RHRV includes the most commonly HRV analysis techniques, with facilities

for tuning the most important analysis parameters. It is possible to:

– Perform time-domain analysis.

– Perform frequency-domain analysis; they provide information on the renin

-angiotensin system (Very Low Frequency component), both sympathetic

and parasympathetic systems (Low Frequency component) and the

parasympathetic system (High Frequency component). The components

can be calculated using both Fourier analysis and wavelet analysis.

– Perform nonlinear analysis techniques; they can extract some valuable

information from the HRV since it responds to a complex control system.

• RHRV can split HRV series into different segments that may correspond with

different pathological states (i.e.: HRV inside and outside apnea episodes).

This simplifies the statistical comparison of the heart rate inside and outside

episode events.
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1.1. AIM

• RHRV provides flexibility for accessing directly the internal data structures

that it uses in its calculations.

The RHRV package can be freely downloaded from the R-CRAN repository [2].

1.1 Aim

The aim of this tutorial is to help the user to get started with the RHRV package for

the R environment. This document supposes that the user has some basic knowledge

about both the R environment and HRV. However, a short introduction to HRV will

be given, and further references are provided.

1.2 Structure of the document

The remainder of this document is structured as follows. First, a brief review of

several HRV topics is given in Chapter 2. This chapter contains a short discussion on

the physiological origins of heart rate variability, as well as a review of the frequency

components of HRV. Section 2.1 continues discussing the extraction of heart beat

periods. The derivation and the preprocessing of HRV time series are also described.

In Section 2.2, the most common HRV analysis methods are summarized (although

they will be covered in more depth when they are introduced in the document). The

descriptions of the methods are divided into time-domain, frequency-domain, and

nonlinear. A discussion on the important issue of stationarity is included. The rest

of the chapter (Section 2.3) is focused on the use of HRV as a predictor of different

7



1.2. STRUCTURE OF THE DOCUMENT

pathologies and its clinical applications.

Chapter 3 explains how to get RHRV installed in your computer. This guide assumes

that you have already installed R in your computer.

Chapter 4 presents a “15-minutes guide to RHRV”. This chapter presents the es-

sential functions needed to perform basic time and frequency domain analysis with

RHRV. Chapter 5 completes the functionality introduced in Chapter 4 and presents

more advanced features available in RHRV focusing on reading RR intervals stored

in different formats and episodic information analysis.

Chapter 6 introduces the functionality needed to perform HRV nonlinear analysis

with RHRV.
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Chapter 2

Heart Rate Variability

Heart Rate Variability (HRV) describes variations over time of both instantaneous

HR and the intervals between consecutive heart beats. The rhythm of the heart is

modulated by the sinoatrial node (SA), which is largely influenced by both the sym-

pathetic and parasympathetic branches of the ANS (see Figure 2.1). Sympathetic

activity increases the heart rate and its response is slow (a few seconds). On the

other hand the parasympathetic activity decreases the heart rate and its response is

faster (0.2-0.6 seconds). Parasympathetic influence on heart rate is mediated by the

action of the vagus nerve. There are also some feedback mechanisms modulating the

heart rates, that try to maintain cardiovascular homeostasis by responding to the

perturbations sensed by baroreceptors and chemoreceptors.
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Figure 2.1: Modulation of the heart by the sympathetic and parasympathetic systems.
Figure taken from [1].
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Under resting conditions, vagal tone prevails. However, parasympathetic and sym-

pathetic activity constantly interact. The continuous modulation of the ANS results

in continuous variations in heart rate as shown in Figure 2.2. The beat to beat inter-

val variations are the result of the interaction of the beat-to-beat control mechanisms.

time

vo
lta
ge

Figure 2.2: Heart rate variation as a consequence of the modulation of the ANS.

Due to the different speed of response of both branches of the ANS, it is possible to

use the frequency analysis to discriminate between the sympathetic and parasym-

pathetic contributions to the HRV. Akselrod et al. [4] described three components

in the HRV power spectrum with physiological relevance: the Very Low Frequency

(VLF) component (frequencies below 0.03 Hz), the Low Frequency (LF) component

(0.03-0.15 Hz) and the High Frequency (HF) component (0.15-0.4 Hz). However, at

present there is no absolute consensus on the precise limits of their boundaries.

Among all the HF mechanisms involved in the heart rate modulation we find the so

called Respiratory Sinus Arrhythmia (RSA): the heartbeat synchronization with the

respiratory rhythm [7]. In addition to the breathing frequencies, the HF component

is believed to be of parasympathetic origin. It should be noted that, although it is
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common to set the upper limit of the HF band to 0.4-0.5 Hz, it may extend up to 1

Hz for children or adults during exercise.

The LF component is a subject of controversy. Some consider that the LF phe-

nomena is of both sympathetic and parasympathetic origin [4], [5], although some

authors have suggested that the sympathetic system predominates [16], [23]. This

discrepancy is due to the fact that, in conditions of sympathetic excitation, a

decrease in the absolute power of the LF band is observed. This band also includes

the component referred to as the 10-second rhythm or the Mayer wave, caused by

oscillations in baroreceptor and chemoreceptor reflex control systems.

Spectral analysis of 24-hour recordings shows that in healthy individuals both LF

and HF bands exhibit a circadian pattern and reciprocal fluctuations, with higher

values of the LF in the daytime and of HF at night [10], [23].

LF and HF power can increase under different conditions. An increase of LF is

observed during mental stress, standing and moderate exercise in healthy subjects,

and during hypotension, physical activity and occlusion of a coronary artery or

common carotid arteries in conscious dogs. On the other hand, an increase of the

HF activity is observed during cold stimulation of the face, rotational stimuli and

controlled respiration [9].
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2.1. OBTAINING HRV TIME SERIES

The LF/HF ratio is often used by some investigators [9] as a quantitative mirror

of the sympatho/vagal balance. However, other researchers disagree about the

usefulness of the LF/HF index [7].

Finally, the rhythms associated with VLF have not been studied as deeply as the

higher frequencies. Indeed, some authors doubt that there is a specific physiological

process attributable to these heart period changes. Furthermore, the VLF band is

affected by algorithms of baseline removal [9]. Despite all these objections, some

authors have related the Very Low Frequency with the renin-angiotensin system.

Finally, it is possible to split this band into another two: the Very Low Frequency

Band (VLF, 0.003-0.03 Hz) and the Ultra Low Frequency (ULF) Band(0-0.003 Hz).

Unless explicitly mentioned, the VLF band will be used to refer the (0 - 0.03 Hz)

band.

Figure 2.3 summarizes the influence of the ANS system over the different HRV

frequency bands.

2.1 Obtaining HRV time series

2.1.1 QRS detection

The aim of HRV analysis is to analyze the sinus rhythms while it is modulated by

the ANS. Thus, the starting point for HRV analysis should be the extraction of
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2.1. OBTAINING HRV TIME SERIES

HF: (0.15-0.4) Hz
Parasympathetic origin

LF: (0.03-0.15) Hz
Parasympathetic and
sympathetic origin

VLF: (<0.03) Hz
renin-angiotensin system

Figure 2.3: Influence of the ANS system over the different HRV frequency bands.

the SA-node action potentials from the electrocardiogram (ECG). A typical ECG

showing a heartbeat consists of a P wave, a QRS complex and a T wave (see Figure

2.4). The P wave represents the wave of depolarization that spreads from the

SA-node throughout the atria. The QRS complex reflects the rapid depolarization

of the right and left ventricles. Since the ventricles are the largest part of the heart,

in terms of mass, the QRS complex usually has a much larger amplitude than the

P-wave. The T wave represents the ventricular repolarization of the ventricles. On

rare occasions, a U wave can be seen following the T wave. The U wave is believed

to be related to the last remnants of ventricular repolarization.
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2.1. OBTAINING HRV TIME SERIES

P

Q

R

S

T
ST

SegmentPR
Segment

PR Interval

QT Interval

QRS
 Complex

Figure 2.4: Normal electrocardiogram.

The observable that is closest related to the action of the SA-node is the P wave and,

thus, the heartbeat period is defined as the time difference between two different P

waves. However, the signal to noise ratio (SNR) of the P wave is smaller than the

QRS complex SNR. Therefore, the QRS complexes are more easily detected than

the P waves and, for convenience, the heart beat period is computed as the time

difference between two successive QRS complexes. For the sake of simplicity, we

will not discuss the QRS detectors in this tutorial. Further information about QRS

detection may be found in [20].

15



2.1. OBTAINING HRV TIME SERIES

2.1.2 Constructing HRV time series

After the QRS complex occurrences have been detected, the HRV time series

(sometimes called the RR time series) may be calculated. The intervals between

consecutive heart beats needed to construct the time series are called RR intervals,

inter-beat intervals or interval function. In some context, normal-to-normal intervals

(NN) may also be used when referring to these intervals.

RR intervals are computed as the difference between successive R-wave occurrence

times tn. That is, the n-th RR interval RRn will be computed as

RRn = α · (tn − tn−1), (2.1)

where α is a conversion parameter that may vary depending of the units in which

the RR time series will be expressed. Usually, the RR intervals are expressed in ms

and thus, if the occurrence times are expressed in seconds, α is setted as α = 1000.

It must be noticed that, in some studies, the HRV is constructed as the sequence of

the instantaneous heart rates. That is

HRn =
β

tn − tn−1

. (2.2)

Again, β is used as a conversion parameter. Since the HR is usually expressed in

Beats Per Minute (bpm), β = 60 if the occurrence times are expressed in seconds.

In this section, for the sake of simplicity, the RRn construction will be used.
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2.1. OBTAINING HRV TIME SERIES

The resulting RR series will consist of a set of pairs (tn, RRn). It should be noted

that this time series is not equidistantly sampled (that is why the time value, tn, must

be specified). This must be taken into account before frequency-domain analysis,

since it requires an uniformly sampled time series. There are several approaches to

overcome this issue [9]. RHRV uses interpolation for transforming the non-uniformly

sampled RR series into an equidistantly sampled one. After interpolation, regular

frequency analysis may be applied. A second approach, maybe the simplest one,

assumes equidistant sampling and constructs a signal, called tachogram, using RR

intervals as a function of a beat number. However, when using this approach, the

spectrum is not a function of the frequency, rather of cycles per beat. A third

approach receives the name of the spectrum of the counts, that is, it uses a series of

impulses (delta functions) positioned at beat occurrence times. This approach relies

on the commonly accepted Integral Pulse Frequency Modulator (IPFM) model [6],

[15], that simulates the modulation of the sinoatrial node.

2.1.3 Preprocessing HRV time series

Before performing the analysis of any RR time series, a filtering operation must be

carried out in order to eliminate outliers or spurious points present in the signal with

unacceptable physiological values. Outliers present in the series originate from the

detection of an artifact as a heartbeat (RR interval too short), or from the loss of a

heartbeat in the detection procedure (RR interval too large). The RR time series

may also contain some physiological artifacts. Physiological artifacts include ectopic
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beats (an ectopic beat occurs when the heart beat is not triggered by the SA-node,

causing an “extra” beat) and arrhythmic events. If detection of the heartbeat has

been revised and corrected manually by a physician, this step can be skipped.

2.2 HRV analysis techniques

The purpose of analysis techniques usually is to extract useful physiological informa-

tion that may help researchers to create new disease markers or predictors. There

are several tools to perform HRV analysis, however these are usually classified into

three categories: time domain methods, frequency domain methods and non-linear

methods. A brief review of the main techniques of time domain, frequency domain

and nonlinear methods is presented. Further information may be found at [9].

2.2.1 Time domain methods

The simplest HRV analysis techniques are the time domain measures. Since there

exist a wide variety of time domain techniques, we will focus on those included in

the RHRV software.

The best known time analysis statistic may be the standard deviation of the RR

interval: Standard Deviation of the NN interval (SDNN).

SDNN =

√√√√ 1

N − 1

N∑
j=1

(RRj −RR)2
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Since the variance is mathematically equal to the total power of spectral analysis,

SDNN reflects the power of the components responsible for variability. The SDNN

reflects both short-term and long-term variations within the RR series. However, it

should be noted that total variance of HRV increases with the length of the analyzed

recording [31]. Thus, on arbitrarily ECGs, SDNN may not be an appropriate HRV

analysis variable because of its dependence with the recording’s length. To avoid

this issue, statistical variables calculated from segments of the total monitoring

period may be used. Among this type of variables are the SDANN, the standard

deviation of the average NN (RR) intervals calculated over short periods (usually 5

minutes); and the SDNN index, the mean of the standard deviation calculated over

the windowed RR intervals, usually 5 minutes.

Other measures use the time series constructed as successive RR interval differences,

defined as

∆RRj = RRj+1 −RRj.

The Standard Deviation of Successive Differences (SDSD) is given by

SDSD =

√√√√ 1

N − 1

N∑
j=1

(∆RRj −∆RR)2.

The Root Mean Square of Successive Differences (RMSSD) is given by

RMSSD =

√√√√ 1

N − 1

N∑
j=1

(∆RRj)2.
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Other measures using the successive RR interval differences include the length of

the interval determined by the first and the third quantile of the ∆RR time series

(IRRR); and the median of the absolute values of the ∆RR time series (MADRR,

Median of the Absolute Differences of the RR intervals).

Other commonly used measures derived from interval differences include NN50, the

number of interval differences of successive RR intervals greater than 50 ms, and

pNN50, the proportion derived by dividing NN50 by the total number of RR intervals.

All these measures derived from interval differences estimate the HF variation in

heart rhythm and thus, they are highly correlated.

Finally, in addition to these statistical parameters, there are some geometric mea-

sures that can be calculated from the RR interval histogram. The HRV triangular

index measurement is the integral of the density distribution (that is, the number

of all RR intervals) divided by the maximum of the density distribution. The

density distribution may be estimated by using a histogram, thus the size of the bins

should be specified. Another geometrical measure is the triangular interpolation of

NN (RR) interval histogram (TINN), which is calculated as the baseline width of

the distribution measured as the base of a triangle (a triangular interpolation of

the histogram may be used). The TINN measure is usually expressed in milliseconds.
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The major advantage of geometric methods lies in their relative insensitivity to the

analytical quality of the RR series. Their major disadvantage is that they need a

large number of RR intervals for performing correctly.

2.2.2 Frequency domain methods

The basic frequency domain analysis technique is the Power Spectrum Density

(PSD). It provides basic information on how power distributes as a function of fre-

quency in the RR time series. Since the sympathetic an parasympathetic branches of

the ANS are associated with different frequency bands, the PSD may be a useful tool

to discriminate its different contributions to the HR. The most common approach to

spectral analysis of HRV is based on the Fourier transform. The Fourier transform

is a tool that is able to extract the frequencies of a signal. For those unfamiliar with

the “frequency” language, we will say that a signal with fast and sharp changes has

“high frequencies”, whereas a signal with slow transitions is referred to as a signal

with “low frequencies” (see Figure 2.5). Of course, a signal can contain both low and

high frequencies. In this sense, the Fourier transform acts as a prism, separating

the high frequency contributions from the low frequency contributions. The discrete

implementation is referred to as the Discrete Fourier Transform (DFT) and its

efficient implementation is called the Fast Fourier Transform (FFT).

The Fourier transform is one of the most powerful tools for signal processing.

However, it may not be the most suitable tool for studying transient phenomena:

the Fourier transform might be able to determine all the frequencies present in a
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Figure 2.5: High and low frequencies illustrated with sines.

signal, but not when they are present. To address this issue, several techniques able

to represent a signal in both time and frequency domain have been developed.

Following Gabor [11], the idea behind these time-frequency joint representations is

to define elementary time-frequency atoms as waveforms with minimum spread in

the time-frequency plane. To measure time-frequency information content, Gabor

proposed decomposing signals over these elementary atoms. Selecting the time-

frequency atoms is not a trivial problem because of the existence of a time-frequency

uncertainty principle. This uncertainty principle states that the energy spread of a

function and its Fourier transform cannot simultaneously be arbitrarily small.
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The simplest transform that uses this idea is the windowed Fourier transform, that

is constructed by using a symmetric window that selects the portion of the signal

that is going to be analyzed. The remaining portions of signal can be selected by

translating the window in time. When this transform is applied to discrete signals,

it is referred to as the Short Time Fourier Transform (STFT).

Another widely used transform that uses time-frequency atoms is the wavelet trans-

form. A wavelet is a “small wave” with zero mean that grows and decays in a limited

time period. Since any of these small waves results in different wavelets, there are

several wavelet families. Figure 2.6 shows two such wavelets. The reference wavelet

fulfilling the above conditions is called “mother wavelet”. The mother wavelet can

be translated and dilated in time, yielding a set of wavelet functions with different

sizes and centered in different time positions. This set of functions is used to ex-

tract time-frequency information by correlating them with the signal being analyzed.

Although the idea of the wavelet transform is similar to that used in the STFT, the

wavelet transform often provides a better compromise between time and frequency

resolution. This is due to the fact that the STFT uses just one window for “ex-

ploring” all the frequency bands. However, the ideal approximation would be using

short windows at high frequencies and long windows at low frequencies. Thus, the

“global” performance of the STFT will depend on the choice of the length of the

window and the displacement time used for moving it. The wavelet transform, in

contrast to the STFT, follows the ideal approximation, leading to a multiresolution
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analysis. RHRV has support for both approaches, and they both have a similar

computational efficiency.

Figure 2.6: Two wavelets. The top of the figure shows the Morlet wavelet. The bottom
of the figure shows a Gaussian wavelet.

When working with frequency methods, researchers are especially interested in the

VLF, LF and HF frequency bands. Some authors also include the ULF band. When

selecting the frequency bands, the researchers should take into account whether

they are working with short (2-5 min) or long term recordings (up to 24-hours).

Three main spectral components are distinguished in a spectrum calculated from

short-term recordings: VLF, LF and HF components. However, VLF assessed from

short-term recordings is a dubious parameter and, therefore, it should be avoided

when interpreting the PSD in this type of recordings [9]. Spectral analysis resulting

from long-term recordings include VLF, LF and HF bands. In the long recordings,

the VLF band may be split into the ULF and the VLF components.
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2.2.3 Nonlinear Methods

There is a profound connection between nonlinear phenomena and HRV. HRV is

determined by complex interactions of electrophysiological and humoral variables,

as well as by autonomic and central nervous regulations. Considering these complex

control systems modulating the heart rhythm, it has been speculated that methods

of the nonlinear dynamics might extract some valuable information from the HRV

series.

A wide variety of nonlinear statistics have already been used in the HRV literature,

including largest Lyapunov exponent, generalized correlation dimension, SD1/SD2

of Poincaré plots, detrended fluctuation analysis, sample entropy and recurrence

quantification analysis. Table 2.1 summarizes the most important nonlinear statis-

tics that have been included in RHRV. In the next sections, we shall present a

quick theoretical review of all these methods. More details will be given later in the

tutorial when we show how to use these methods in RHRV.

2.2.3.1 Phase space reconstruction

A large amount of nonlinear algorithms is based on the concept of phase space.

For a deterministic system, the phase space is the collection of all possible system

states. That is, each point of the phase space represents all the information needed

to determine the evolution of the system. Of course, the problem now is: How can
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Statistic Interpretation
Maximum Lyapunov Exponent Quantifies the rate of divergence of close

trajectories
Generalized Correlation Dimension Quantifies the dimensionality of the re-

constructed phase space
Sample Entropy Measures the complexity of the time se-

ries being studied
Recurrence Quantification Analysis
(RQA)

Quantifies the number and duration of
recurrences of a time series in its phase
space

Detrended Fluctuation Analysis (DFA) Quantifies the presence of fractal corre-
lation properties in non-stationary data

Poincaré Plot Characterizes the system dynamics by
using a two dimensional embedding

Table 2.1: Summary of the most broadly used nonlinear statistics.

we transform an univariate time series (the RR time series) in a multivariate phase

space?

The Takens embedding theorem answers this question. Takens proved that phase

space reconstruction from a single time series x(n) could be achieved by using the

vectors:

xi = [x(i), x(i+ τ), ..., x(i+ (m− 1) · τ)] , (2.3)

Sections 6.1.2.1 and 6.1.2.2 deals with the problem of selecting both m (the so-called

embedding dimension) and τ (the time lag parameter) using RHRV.
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2.2.3.2 Correlation dimension

The correlation dimension is the most common measure of the fractal dimensionality

of a geometrical object embedded in a phase space. The estimation of the correla-

tion dimension requires the computation of the so-called correlation sum C(r). The

correlation sum is defined over the N points from the phase space as follows:

C(r) =
#{(xi,xj) : distance(xi,xj) < r}

N2
,

where # represents the cardinality of the set and r a radius in the embedding

dimension. However, this estimator is biased when the pairs in the sum are not

statistically independent. For example, Taken’s vectors that are close in time, are

usually close in the phase space due to the non-zero autocorrelation of the original

time series. This is solved by using the so-called Theiler window: two Takens’ vectors

must be separated by, at least, the time steps specified by this window in order

to be considered neighbours. By using a Theiler window, we exclude temporally

correlated vectors from our estimations.

Chaotic attractors are expected to fulfill

C(r) ∝ rD,

being D the correlation dimension that we want to estimate. Thus, the correlation

dimension may be estimated using the slope obtained by performing a linear regres-

sion of log10(C(r)) Vs. log10(r). Since this dimension is supposed to be an invariant
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of the system, it should not depend on the dimension of the Taken’s vectors used to

estimate it (provided that we are using an embedding dimension that is large enough

to reconstruct the phase space). Thus, the user should plot log(C(r)) Vs. log(r)

for several embedding dimensions when looking for the correlation dimension and,

if for some range log(C(r)) shows a similar linear behaviour in different embedding

dimensions (i.e. parallel slopes), these slopes are an estimate of the correlation di-

mension. This is very important! If the slope depends on the embedding dimension

(provided that we are embedding the time series in a phase space with sufficient

dimensions) we cannot talk about a correlation dimension. Furthermore, the time

series may not be chaotic. More details about this requirement shall be given when

presenting the RHRV functionality for computing the correlation dimension.

2.2.3.3 Generalized correlation dimension

Note that the correlation sum C(r) may be interpreted as: C(r) =< p(r) >, that is:

the mean probability of finding a neighbour in a ball of radius r surrounding a point

in the phase space. Thus, it is possible to define a generalization of the correlation

dimension by writing:

Cq(r) =< p(r)(q−1) > .

With this notation, the “classic” correlation sum is C(r) = C2(r). It is possible to

determine generalized dimensions Dq using the slope obtained by performing a linear

regression of log(Cq(r)) V s. (q − 1)log(r). The case q = 1 leads to the information
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dimension, that is treated separately in this package. see Sections 2.2.3.4 and 6.2.3).

The considerations discussed for the correlation dimension estimate are also valid for

these generalized dimensions.

2.2.3.4 Information dimension

The information dimension is a particular case of the generalized correlation dimen-

sion when setting the order q = 1. It is possible to demonstrate that it can be defined

as:

D1 = limr→0 < log p(r) > / log(r), (2.4)

being D1 the information dimension, p(r) is the probability of finding a neighbour

in a neighbourhood of size r and <> is the mean value. Thus, the information

dimension specifies how the average Shannon information scales with the radius r.

In order to estimate D1 in practical applications, a variation of equation 2.4 is used.

This algorithm looks for the scaling behaviour of the average radius that contains a

given portion (a ”fixed-mass”p) of the total points in the phase space. By performing

a linear regression of log(p) V s. log(< r >), an estimate of D1 is obtained.

2.2.3.5 Sample entropy

The sample entropy measures the complexity of a time series. Large values of the

Sample Entropy indicate high complexity whereas that smaller values characterize

more regular signals. The sample entropy of order q is computed in the RHRV

29



2.2. HRV ANALYSIS TECHNIQUES

package by using the correlation sums calculated with the CalculateCorrDim. We

first define the function:

hq(m, r) = log

(
Cq(m, r)

Cq(m+ 1, r)

)
,

where m is the embedding dimension and q the order of the correlation sum. The

Sample entropy (or Renyi entropy) of order q Hq fulfills

Hq = lim r→0
m→∞

hq(m, r). (2.5)

2.2.3.6 Maximum Lyapunov exponent

Close trajectories diverge exponentially fast in a chaotic system. The averaged expo-

nent that determines the divergence rate is called the Lyapunov exponent (usually de-

noted with λ). If δ(0) is the distance between two Takens’ vectors in a m-dimensional

space, we expect that the distance after a time t between the two trajectories arising

from this two vectors fulfills:

δ(t) ∝ δ(0) · exp(λt).

Thus, the Lyapunov exponent is estimated using the slope obtained by performing

a linear regression of S(t) = λ · t ≈ log(δ(t)/δ(0)) on t. In practical applications, we

should check the existence of a linear region when plotting S(t) Vs. t. If for some

temporal range this plot shows a linear behaviour, its slope is an estimate of the

maximal Lyapunov exponent per unit of time. If such a region does not exist, the
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estimation should be discarded.

Also, just as for the correlation dimension computations, the maximal Lyapunov

exponent should be computed for several embedding dimensions in order to check

that it does not depend on the embedding dimension.

2.2.3.7 Detrended Fluctuation Analysis (DFA)

The Detrended Fluctuation Analysis (DFA) is a widely used technique for detecting

correlations in time series. These functions are able to estimate several scaling expo-

nents from the RR time series being analyzed. These scaling exponents characterize

short or long-term fluctuations. The DFA procedure may be summarized as follows:

1. Integrate the time series to be analyzed. The time series resulting from the

integration will be referred to as the profile.

2. Divide the profile into N non-overlapping segments.

3. Calculate the local trend for each of the segments using least-square regression.

Compute the total error for each of the segments.

4. Compute the average of the total error over all segments and take its root

square. By repeating the previous steps for several segment sizes (let’s denote

it by t: number of beats), we obtain the so-called fluctuation function F (t).

5. If the data presents long-range power law correlations: F (t) ∝ tα, we can

estimate the exponent using regression.
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6. Usually, when plotting log(F (t)) Vs log(t) we may distinguish two linear re-

gions. By performing a regression on each of them separately, we obtain two

scaling exponents, α1 (the exponent for small values of t, characterizing short-

term fluctuations) and α2 (the exponent for large values of t, characterizing

long-term fluctuations).

2.2.3.8 Recurrence Quantification Analysis (RQA)

The Recurrence Quantification Analysis (RQA) is an advanced technique for the

nonlinear analysis that allows to quantify the number and duration of the recurrences

in the phase space. A recurrence is a time instant in which the trajectory returns to a

phase space region it has visited before. Thus, it is a representation of those instants

of time in which xi ≈ xj) for every i and j. The recurrence plot is the graphical

representation of the recurrence matrix of the RR time series. The RQA function

allows to compute several statistics derived from the RQA analysis of the RR time

series. Table 2.2 summarize the most important RQA statistics and its meaning.

2.2.3.9 Poincaré plot

The Poincaré plot is a graphical representation of the dependance between successive

RR intervals obtained by plotting the RRj+τ as a function of RRj. This dependance

is often quantified by fitting an ellipse to the plot. In this way, two parameters

are obtained characterizing the ellipse: SD1 and SD2. When τ = 1, SD1 is usually

calculated as the standard deviation of the points perpendicular to the line of identity
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Statistic RHRV name Interpretation

Recurrence REC Percentage of recurrence
points in a Recurrence
Plot

Determinism DET Percentage of recurrence
points that form diagonal
lines

Laminarity LAM Percentage of recurrent
points that form vertical
lines

Ratio RATIO Ratio between DET and
RR

Longest diagonal line Lmax Length of the longest di-
agonal line

Averaged diagonal line
length

Lmean Mean length of the diago-
nal lines. The main diag-
onal is not taken into ac-
count

Divergence DIV Inverse of Lmax
Longest vertical line Vmax Longest vertical line
Trapping time Vmean Average length of the ver-

tical lines.
Entropy ENTR Shannon entropy of the

diagonal line lengths dis-
tribution

Trend TREND Trend of the number of
recurrent points depend-
ing on the distance to the
main diagonal

Recurrence Rate recurrenceRate Number of recurrent
points depending on the
distance to the main
diagonal

Table 2.2: Most important RQA statistics.
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and SD2 is calculated as the standard deviation along the line of identity. In terms

of time-domain parameters:

SD2
1 =

1

2
SDSD2

SD2
2 = 2 · SDNN2 − 1

2
SDSD2

In this way SD1 characterizes short-term variability whereas that SD2 character-

izes long-term variability. However, sometimes the ellipse that is fitted using this

approach is too small. RHRV also allows the user to fit a ellipse by estimating a

confidence region. If τ > 1, the confidence region approach is always used. More

details shall be given in 6.2.4.

2.3 HRV alterations related to specific patholo-

gies

In the course of the last two decades numerous studies have shown HRV to be

a useful tool as a predictor of several pathologies such as myocardial infarction,

sudden cardiac death, heart failure, hypertension, and ischemia, among others [22].

However, it should be noted that the practical use of HRV has reached general

consensus only in two clinical applications: as a predictor of risk after myocardial

infarction and as an early warning of diabetic neuropathy. [9], [18].

Table 2.3 resumes some HRV applications to other diseases.
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Table 2.3: Summary of the clinical value of HRV analysis in cardiological diseases. In-
spired by [9].

Disease state Clinical finding Potential value

Myocardial infarction (MI) ↓ HRV after myocardial infarc-

tion (MI). In the severe phase

of MI, there is a ↓ standard de-

viation of the HRV signal

Depressed HRV is a power-

ful predictor of mortality and

of arrhythmic complications in

patients following acute MI

HRV analysis is useful for risk

stratification of patients fol-

lowing MI

Diabetic neuropathy ↓ time-domain parameters of

HRV preceded the clinical de-

tection of autonomic neuropa-

thy. ↓ LF and HF bands in di-

abetic patients with no signs of

autonomic neuropathy

HRV analysis may be used

as predictor of diabetic auto-

nomic neuropathy occurrence

Hypertension ↑ LF found in hypertensives

with circadian patterns

Hypertension is characterized

by depressed circadian rhyth-

micity of LF

Reduced parasympathetic ac-

tivity in hypertensive patients

Congestive heart failure (CHF) ↓ spectral power in all frequen-

cies, especially > 0.04 Hz

In CHF, there is ↓ vagal,

but relatively preserved sym-

pathetic modulation of HR

Low HRV Reduced vagal activity in CHF

patients

↓ HF power in CHF.↑ LF/HF Low parasympathetic tone in

CHF. CHF produces imbal-

ance of autonomic tone with ↓

parasympathetic and predomi-

nance of sympathetic tone

Continued on next page
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Table 2.3 – continued from previous page

Disease state Clinical findings Potential value

Alterations in HRV not tightly

linked to severity of CHF. ↓

HRV was related to sympa-

thetic excitation

↑ HRV during ACE

(angiotensin-converting-

enzyme) inhibitor treatment

Increase of the sympathetic

tone associated with ACE in-

hibitor therapy

Heart Transplantation HRV from 0.02 to 1 Hz is 90%

reduced

Patients with rejection show

less variability

Chronic mitral regurgitation HR techniques correlated with

ventricular performance and

predicted clinical events

Prognostic indicator of atrial

fibrillation, mortality and pro-

gression to valve surgery

Mitral Valve prolapse (MVP) ↓ HF power MVP patients had low vagal

tone

Cardiomyopathies Global and specific vagal tone

measurements of HRV were ↓

in symptomatic patients

Sudden death (SD) or cardiac

arrest (CA)

LF power and standard devi-

ation of HRV signals were re-

lated to 1 year mortality

HRV is useful to risk stratify

CA survivors for 1 year mor-

tality

↓ HF power in CA survivors

Both time and frequency do-

main indexes separated con-

trols from SD patients. ↓ HF

power was the best separator

between heart disease patients

with and without SD

HF power may be useful pre-

dictor of SD

SDNN index was lower in SD

patients

Time domain indexes may

identify increased risk of SD

Continued on next page
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Table 2.3 – continued from previous page

Disease state Clinical findings Potential value

Ventricular arrhythmias HRV indexes do not change

consistently before ventricular

fibrillation (VF). All power

spectra of HRV were signifi-

cantly ↓ before the onset of

sustained ventricular tachycar-

dia (VT) than before non sus-

tained VT

A temporal relation exists be-

tween the decrease of HRV and

the onset of sustained VT
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Chapter 3

Installation

3.1 Installation

This guide assumes that the user has some basic knowledge of the R environment. If

this is not your case, you can find a nice introduction to R in the R project homepage

[3]. The R project homepage also provides an “R Installation and Administration”

guide. Once you have download and installed R, you can install RHRV by typing:

> install.packages("RHRV")

You can also install it by downloading it from the CRAN [2]. Once the download

has finished, open R, move to the directory where you have download it (by using

the R command setwd) and type:

> install.packages("RHRV_XXX",repos=NULL)

Here, XXX is the version number of the library. To start using the library, you should

load it by using the library command:
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> library(RHRV)

3.2 WFDB applications

Some functions of the RHRV package (such as the LoadApneaWFDB) require the

installation of the WFDB functions [25]. If the user is not going to work with WFDB

formatted files, the installation of these libraries is not required for the proper func-

tioning of RHRV. The WFDB functions is a large collection of specialized software for

processing and manipulating the PhysioNet’s databases [14]. On Windows and Mac

OSX operating systems is necessary to define a .Renviron file in the user workspace

indicating the directory of the WFDB commands. Examples for both OS are given

below:

## .Renviron on Windows

PATH = "c:\\cygwin\\bin"

DYLD_LIBRARY_PATH = "c:\\cygwin\\lib"

## .Renviron on Macosx

PATH = "/opt/local/bin"

DYLD_LIBRARY_PATH = "/opt/local/bin"
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3.3 Troubleshooting

3.3.1 When installing the RHRV package in linux, some-

times the installation fails when installing the tkrplot

dependency.

...

tcltkimg.c:2:16: fatal error: tk.h: No such file or directory

compilation terminated.

ERROR: compilation failed for package 'tkrplot'

...

ERROR: dependency 'tkrplot' is not available for package 'RHRV'

This is usually because there are some missing libraries in your system. Generally,

the problem will be fixed by installing the tclX.X, tkX.X, tclX.X-dev and tkX.X-dev

libraries (X.X stands for the version of the libraries).
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Chapter 4

A 15-minutes guide to RHRV

In this chapter, a brief description of the RHRV package is presented [30]. Due

to the large collection of features that RHRV offers, in this chapter we shall refer

only to the most important functionality for performing a basic HRV analysis. In

the next chapter we will present more advanced functionality of the package, or

functionality geared to certain particular types of analysis. RHRV can be freely

downloaded from the R-CRAN repository [2].

We propose the following basic program flow to perform HRV analysis using the

RHRV package:

1. Load heart beat positions. For the sake of simplicity, in this section we will

focus in ASCII files.

2. Build the instantaneous HR series and filter it to eliminate spurious points.

3. Plot the instantaneous HR series.
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4. Interpolate the instantaneous HR series to obtain a HR series with equally

spaced values.

5. Plot the interpolated HR series.

6. Perform the desired analysis. The user can perform time-domain analysis,

frequency-domain analysis and/or nonlinear analysis.

7. Plot the results of the analysis that has been performed and access the “raw”

data.

In section 4.1 we will address points 1-5, whereas in section 4.2 we will deal with

points 6 and 7. All the examples of this chapter will use the example beats file “ex-

ample.beats” that may be downloaded from http://rhrv.r-forge.r-project.org/. Adi-

tionally, the data from this file has been included in RHRV. The user can access this

data executing:

> # HRVData structure containing the heart beats

> data("HRVData")

> # HRVData structure storing the results of processing the

> # heart beats: the beats have been filtered, interpolated, ...

> data("HRVProcessedData")

The example file is an ASCII file that contains the beat positions obtained from

a 2 hours ECG (one beat position per row). The subject of the ECG is a patient

suffering from paraplegia and hypertension (systolic blood pressure above 200

mmHg). During the recording, he is supplied with prostaglandin E1 (a vasodilator
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4.1. PREPROCESSING THE HEART RATE SERIES

that is rarely employed) and systolic blood pressure fell to 100 mmHg for over an

hour. Then, the blood pressure increased slowly up to approximately 150 mmHg.

The console output shall be shown for every example.

4.1 Preprocessing the Heart Rate series

4.1.1 Load heart beat positions

RHRV uses a custom data structure called HRVData to store all HRV information

related to the signal being analyzed. HRVData is implemented as a list object in R

language. This list contains all the information corresponding to the imported signal

to be analyzed, some parameters generated by the pre-processing functions and the

HRV analysis results. A new HRVData structure is created using the CreateHRVData

function. In order to obtain detailed information about the operations performed by

the program, we can activate a verbose mode using the SetVerbose function.

> hrv.data = CreateHRVData()

> hrv.data = SetVerbose(hrv.data, TRUE )

After creating the empty HRVData structure the next step should be loading the sig-

nal that we want to analyze into this structure. RHRV imports data files containing

heart beat positions. Supported formats include ASCII (LoadBeatAscii function),

EDF (LoadBeatEDFPlus), Polar (LoadBeatPolar), Suunto (LoadBeatSuunto) and

WFDB data files (LoadBeatWFDB) [26]. For the sake of simplicity, we will focus
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4.1. PREPROCESSING THE HEART RATE SERIES

in ASCII files containing one heart beat occurrence time per line. We also assume

that the beat occurrence time is specified in seconds (further details will be given in

chapter 5). For example, let’s try to load the “example.beats” file, whose first lines

are shown below. Each line denotes the occurrence time of each heartbeat.

0

0.3280001

0.7159996

1.124

1.5

1.88

In order to load this file, we may write:

> hrv.data = LoadBeatAscii(hrv.data, "example.beats",

+ RecordPath = "beatsFolder")

** Loading beats positions for record: example.beats **

Path: beatsFolder

Scale: 1

Date: 01/01/1900

Time: 00:00:00

Number of beats: 17360

The console information is only displayed if the verbose mode is on. The Scale

parameter is related to the time units of the file. 1 denotes seconds, 0.1 tenth
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4.1. PREPROCESSING THE HEART RATE SERIES

of seconds and so on. The Date and Time parameters specify when the file was

recorded. More details about these parameters will be given in section 5.1.2. The

RecordPath can be omitted if the RecordName is in the working directory.

4.1.2 Calculating HR and filtering

To compute the HRV time series the BuildNIHR function can be used (Build Non

Interpolated Heart Rate). This function constructs both the RR (Equation 2.1) and

instantaneous heart rate (HR) series (Equation 2.2) described in Section 2.1. We

will refer to the instantaneous heart rate (HR) as the Non Interpolated Heart Rate

(niHR) series. Both series are stored in the HRVData structure.

> hrv.data = BuildNIHR(hrv.data)

** Calculating non-interpolated heart rate **

Number of beats: 17360

A filtering operation must be carried out in order to eliminate outliers or spurious

points present in the niHR time series with unacceptable physiological values.

Outliers present in the series originate both from detecting an artifact as a heartbeat

(RR interval too short) or not detecting a heartbeat (RR interval too large). The

outliers removal may be both manual or automatic. In this quick introduction, we

will use the automatic removal. The automatic removal of spurious points can be

performed by the FilterNIHR function. The FilterNIHR function also eliminates

45
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points with unacceptable physiological values.

> hrv.data = FilterNIHR(hrv.data)

** Filtering non-interpolated Heart Rate **

Number of original beats: 17360

Number of accepted beats: 17259

4.1.3 Interpolating

In order to be able to perform spectral analysis in the frequency domain, a uniformly

sampled HR series is required. It may be constructed from the niHR series by using

the InterpolateNIHR function, which uses linear (default) or spline interpolation

(further details on chapter 5). The frequency of interpolation may be specified.

4 Hz (the default value) is enough for most applications.

> # Note that it is not necessary to specify freqhr since it matches with

> # the default value: 4 Hz

> hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)

** Interpolating instantaneous heart rate **

Frequency: 4Hz

Number of beats: 17259

Number of points: 29594
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4.1.4 Plotting

Before applying the different analysis techniques that RHRV provides, it is usually

interesting to plot the time series with which we are working. The PlotNIHR

function permits the graphical representation of the niHR series whereas the PlotHR

function permits to graphically represent the interpolated HR time series.

> PlotNIHR(hrv.data)

> PlotHR(hrv.data)

The plots obtained with PlotNIHR and PlotHR are shown in Figures 4.1 and 4.2,

respectively.

As seen in the Figures 4.1 and 4.2, the patient initially had a heart rate of approxi-

mately 160 beats per minute. Approximately half an hour into record the prostaglan-

dina E1 was provided, resulting in a drop in heart rate to about 130 beats per minute

during about 40 minutes, followed by a slight increase in heart rate.

4.2 Analyzing the Heart Rate series

4.2.1 Accessing “raw data”

In the previous sections, we have used the HRVData structure to store all HRV

information related to the signal being analyzed with no knowledge about its internal
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Figure 4.1: Non interpolated Heart Rate time plot example.

structure. However, sometimes, in order to make some particular analysis of the

data, it may be interesting to access them directly. Figure 4.3 summarizes the most

important fields in the HRVData structure. Since all the data in this structure is

stored as an R list, each of its fields can be accessed using the $ operator of the R

language. For example, if we want to access the RR time series of the hrv.data, we

would use:

> RR = hrv.data$Beat$RR

Although it is an advantage to be familiarized with the HRVData structure, there

is no need to memorize it since we can use the useful name R function. Thus, if we

want to know which fields are stored into the hrv.data$Beat subfield, we could use:
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Figure 4.2: Interpolated Heart Rate time plot example.

> names(hrv.data$Beat)

[1] "Time" "niHR" "RR"

As we can see, hrv.data$Beat stores the occurrence time of each beat (“Time”), the

niHR time series (“niHR”) and the RR time series (“RR”).

4.2.2 Time-domain analysis techniques

The simplest way of performing a HRV analysis in RHRV is using the time analysis

techniques provided by the CreateTimeAnalysis function. This function computes

the time-domain parameters presented in Section 2.2.1 and stores them in the HRV-

Data structure. The most interesting parameter that the user may specify is the
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Figure 4.3: The most important fields stored in the HRVData structure.

width of the window that will be used to analyze short segments from the RR time

series (size parameter, in seconds). Specifically, several statistics will be computed

for each window. By studying how these statistics evolve through the recording, a

set of time parameters will be computed (For example, the SDANN and SDNNIDX

parameters). Other important argument that can be tuned is the interval width of

the bins that will be used to compute the histogram (interval parameter). As an

alternative to the interval parameter, the user may use the numofbins parameter to

specify the number of bins in the histogram. A typical value for the size parameter

is 300 seconds (which is also the default value), whereas that a typical value for the

interval is about 7.8 milliseconds (also default value).
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> hrv.data = CreateTimeAnalysis(hrv.data, size = 300,

+ interval = 7.8125)

** Creating time analysis

Size of window: 300 seconds

Width of bins in histogram: 7.8125 milliseconds

Number of windows: 24

Data has now 1 time analyses

SDNN: 39.81504 msec.

SDANN: 31.11223 msec.

SDNNIDX: 25.05384 msec.

pNN50: 9.39854 %

SDSD: 31.07026 msec.

r-MSSD: 31.06936 msec.

IRRR: 32 msec.

MADRR: 16 msec.

TINN: 86.10213 msec.

HRV index: 11.02107

If the verbose mode is on, the program will display the results of the calculations on

the screen. Otherwise, the user must access the “raw” data as explained before to

obtain the results.

Finally, we show a complete example for performing a basic time-domain analysis.

The console output is also shown. It should be noted that it is not necessary to
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perform the interpolation process before applying the time-domain techniques since

these parameters are calculated directly from the RR-time series.

> hrv.data = CreateHRVData()

> hrv.data = SetVerbose(hrv.data,FALSE)

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = FilterNIHR(hrv.data)

> PlotNIHR(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

> hrv.data = CreateTimeAnalysis(hrv.data,size=300,interval = 7.8125)

** Creating time analysis

Size of window: 300 seconds

Width of bins in histogram: 7.8125 milliseconds

Number of windows: 24

Data has now 1 time analyses

SDNN: 39.81504 msec.

SDANN: 31.11223 msec.

SDNNIDX: 25.05384 msec.

pNN50: 9.39854 %

SDSD: 31.07026 msec.

r-MSSD: 31.06936 msec.

IRRR: 32 msec.
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MADRR: 16 msec.

TINN: 86.10213 msec.

HRV index: 11.02107

> # We can access "raw" data... let's print separately, the SDNN

> # parameter

> cat("The SDNN has a value of ",hrv.data$TimeAnalysis[[1]]$SDNN," msec.\n")

The SDNN has a value of 39.81504 msec.

4.2.3 Frequency-domain analysis techniques

A major part of the functionality of the RHRV package is dedicated to the spectral

analysis of HR signals. Before performing the frequency analysis, a data analysis

structure must be created. Such structure shall store the information extracted

from a variability analysis of the HR signal as a member of the FreqAnalysis list,

under the HRVData structure. Each analysis structure created is identified by a

unique number (in order of creation). To create such an analysis structure, the

CreateFreqAnalysis function is used.

> hrv.data = CreateFreqAnalysis(hrv.data)

** Creating frequency analysis

Data has now 1 frequency analysis

Notice that, if verbose mode is on, the CreateFreqAnalysis function informs us about

the number of frequency analysis structures that have been created. In order to
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select a particular spectral analysis, we will use the indexFreqAnalysis parameter in

the frequency analysis functions.

The most important function to perform spectral HRV analysis is the Calcu-

latePowerBand function. The CalculatePowerBand function computes the spectro-

gram of the HR series in the ULF, VLF, LF and HF frequency bands using STFT

or wavelets. Boundaries of the bands may be chosen by the user. If boundaries are

not specified, default values are used: ULF, [0, 0.03] Hz; VLF, [0.03, 0.05] Hz; LF,

[0.05, 0.15] Hz; HF, [0.15, 0.4] Hz. The type of analysis can be selected by the user

by specifying the type parameter of the CalculatePowerBand function. The possible

options are either “fourier” or “wavelet”. Because of the backwards compatibility,

the default value for this parameter is “fourier”.

4.2.3.1 Fourier

When using the STFT to compute the spectrogram employing the CalculatePower-

Band function, the user may specify the following parameters related with the STFT:

• Size: the size of window for calculating the spectrogram measured in seconds.

The RHRV package employs a Hamming window to perform the STFT.

• Shift : the displacement of window for calculating the spectrogram measured

in seconds.
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• Sizesp: the number of points for calculating each window of the STFT. Thus,

it is highly recommended to select sizesp so that sizesp = 2N . If the user does

not specify it, the program selects a proper length for the calculations.

When using CalculatePowerBand, the indexFreqAnalysis parameter (in order to

indicate which spectral analysis we are working with) and the boundaries of the

frequency bands may also be specified.

As an example, let’s perform a frequency analysis in the typical HRV spectral bands

based on the STFT . We may select 300 s (5 minutes) and 30 s as window size and

displacement values because these are typical values when performing HRV spectral

analysis. The value of the zero-padding should be chosen to be greater than the

number of samples of the window size. Assuming that the sampling frequency is

4 Hz, the zero-padding value must fulfill sizesp ≥ size · fs. In this occasion, we

select the smallest power of 2 that meets the previous condition: sizesp = 2048 =

211 > 1200 = 300 · 4. Thus, we may write:

> hrv.data = CreateHRVData( )

> hrv.data = SetVerbose(hrv.data,FALSE)

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = FilterNIHR(hrv.data)

> hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)

> hrv.data = CreateFreqAnalysis(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)
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> # Note that it is not necessary to write the boundaries

> # for the frequency bands, since they match

> # the default values

> hrv.data = CalculatePowerBand( hrv.data , indexFreqAnalysis= 1,

+ size = 300, shift = 30, sizesp = 2048, type = "fourier",

+ ULFmin = 0, ULFmax = 0.03, VLFmin = 0.03, VLFmax = 0.05,

+ LFmin = 0.05, LFmax = 0.15, HFmin = 0.15, HFmax = 0.4 )

** Calculating power per band **

** Using Fourier analysis **

Windowing signal... 237 windows

Power per band calculated

Alternatively, we could not specify the sizesp parameter and let the program decide

for us. In fact, the program would use the same criteria that we used in the previous

example. Thus, we could have used the following sentence to obtain exactly the same

results:

> hrv.data = CalculatePowerBand( hrv.data , indexFreqAnalysis= 1,

+ size = 300, shift = 30 )

4.2.3.2 Wavelets

When using wavelet analysis with the CalculatePowerBand function, the user may

specify:
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• Wavelet : mother wavelet used to calculate the spectrogram. Some of the most

widely used wavelets are available: Haar (“haar”), extremal phase (“d4”, “d6”,

“d8” and “d16”) and the least asymmetric Daubechies (“la8”, “la16” and “la20”)

and the best localized Daubechies (“bl14” and “bl20”) wavelets among oth-

ers. The default value is “d4”. The name of the wavelet specifies the “family”

(the family determines the shape of the wavelet and its properties) and the

length of the wavelet. For example, “la8” belongs to the Least Asymmetric

family and has a length of 8 samples. We may give a simple advice for wavelet

selection based on the wavelet’s length: shorter wavelets usually have better

temporal resolution, but worse frequency resolution. On the other hand, longer

wavelets usually have worse temporal resolution, but they provide better fre-

quency resolution. Better temporal resolution means that we can study shorter

time intervals. On the other hand, a better frequency resolution means better

“frequency discrimination”. That is, shorter wavelets will tend to fail when

discriminating close frequencies.

• Bandtolerance: maximum error allowed when the wavelet-based analysis is

performed [12], [13]. It can be specified as either an absolute or a relative error

depending on the “relative” parameter value. Default value is 0.01.

• Relative: logic value specifying which type of band tolerance shall be used:

relative (in percentage) or absolute (default value).

Let [fl, fu] be any frequency band specified by the user and let [f1, f2] be a frequency

interval associated with some node in the
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Maximal Overlap Discrete Wavelet Packet Transform (MODWPT) tree [29].

The relative error εr of fl over the [f1, f2] interval is computed as

εr =
∣∣∣fl − f1

fu − fl

∣∣∣ · 100%.

Similarly, we may define the error εr of the upper frequency fu as

εr =
∣∣∣fu − f2

fu − fl

∣∣∣ · 100%.

The relative error can be used to avoid introducing large errors at small frequency

bands (usually both ULF and VLF bands).

The absolute value ε is defined as usual: ε = |f2 − fu| for the upper frequency and

ε = |f1 − fl| for the lower frequency.

Let’s analyze the same frequency bands as before but using the wavelet-algorithm.

For the sake of simplicity, we will use an absolute tolerance of 0.01 Hz. We may

select the least asymmetric Daubechies of width 8 (“la8”) as wavelet, since it provides

a good compromise between frequency and time resolution. Thus, we may write:

> hrv.data = CreateHRVData( )

> hrv.data = SetVerbose(hrv.data,FALSE)

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = FilterNIHR(hrv.data)
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> hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)

> hrv.data = CreateFreqAnalysis(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

> # Note that it is not necessary to write the boundaries

> # for the frequency bands, since they match the default values

> hrv.data = CalculatePowerBand( hrv.data , indexFreqAnalysis= 1,

+ type = "wavelet", wavelet = "la8", bandtolerance = 0.01, relative = FALSE,

+ ULFmin = 0, ULFmax = 0.03, VLFmin = 0.03, VLFmax = 0.05,

+ LFmin = 0.05, LFmax = 0.15, HFmin = 0.15, HFmax = 0.4 )

** Calculating power per band **

** Using Wavelet analysis **

Power per band calculated

4.2.3.3 Creating several analyses

In the previous examples we have used just one frequency analysis to illustrate the

basic use of CalculatePowerBand. However, it is possible to create and use the same

HRVData for performing several spectral analysis. When we do this, we use the

parameter “indexFreqAnalysis” to indicate which spectral analysis we are working

with. For example, we could perform both Fourier and wavelet based analysis:

> # ...

> # create structure, load beats, filter and interpolate

> hrv.data = CreateFreqAnalysis(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)
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> # use freqAnalysis number 1 for perfoming

> # Fourier analysis. This time, we do not

> # write the band's boundaries

> hrv.data = CalculatePowerBand( hrv.data , indexFreqAnalysis= 1,

+ size = 300, shift = 30, sizesp = 2048, type = "fourier")

** Calculating power per band **

** Using Fourier analysis **

Windowing signal... 237 windows

Power per band calculated

> # use freqAnalysis number 2 for perfoming

> # wavelet analysis. Note the indexFreqAnalysis = 2!!!

> hrv.data = CreateFreqAnalysis(hrv.data)

** Creating frequency analysis

Data has now 2 frequency analysis

> hrv.data = CalculatePowerBand( hrv.data , indexFreqAnalysis= 2,

+ type = "wavelet", wavelet = "la8", bandtolerance = 0.01, relative = FALSE)

** Calculating power per band **

** Using Wavelet analysis **

Power per band calculated
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4.2.3.4 Plotting

RHRV also includes plotting utilities for representing the spectrogram of each fre-

quency band: the PlotPowerBand function. The PlotPowerBand receives as inputs

the HRVData structure and the index of the frequency analysis that the user wants

to plot (indexFreqAnalysis argument). Optionally, the user can specify additional

parameters for modifying the plots (whether to use or not normalized plots, specify

the y-axis, etc.). For the sake of simplicity we will only use the ymax parameter

(for specifying the maximum y-axis of the power bands plot) and the ymaxratio

parameter (for specifying the maximum y-axis in the LF/HF plot).

If we want to plot the power bands computed in the previous example, we may use:

> # Plotting Fourier analysis

> PlotPowerBand(hrv.data, indexFreqAnalysis = 1, ymax = 200, ymaxratio = 1.7)

> # Plotting wavelet analysis

> PlotPowerBand(hrv.data, indexFreqAnalysis = 2, ymax = 700, ymaxratio = 50)

The plots obtained with PlotPowerBand are shown in Figures 4.4 and 4.5, respec-

tively.
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Figure 4.4: Plot obtained with the PlotPowerBand for the Fourier-based analysis.

4.2.3.5 A brief comparison: wavelets Vs. Fourier

Figures 4.4 and 4.5 illustrate some of the most important differences between Fourier

and wavelet-based analysis. The most important differences may be summarized as

follows:

• The power range is not the same when using Fourier than when using wavelets

due to the windowing used in both techniques. Thus, we should avoid direct

comparisons between the numerical results obtained with Fourier with those

obtained using wavelets.
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Figure 4.5: Plot obtained with the PlotPowerBand for the wavelet-based analysis.

• The Fourier’s power spectrum is smoother than the wavelet’s power spectrum.

This is a consequence of the higher temporal resolution that the wavelet-based

analysis provides. We could try to increase Fourier’s frequency resolution by

decreasing the window’ size used in the analysis. The shorter window we use,

the sharper spectrum we get. Similarly, we can increase/decrease temporal res-

olution using shorter/larger wavelets when performing wavelet-based analysis.

• The power spectrum obtained from the Fourier-based analysis has a smaller

number of samples than the original signal as a consequence of the use of
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windows. Conversely, the power spectrum obtained from the wavelet-based

analysis has the same number of samples as the original RR time series.
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Chapter 5

Some more advanced features of

RHRV

5.1 Completing our first tour

In chapter 4 we have presented a brief description of the RHRV package. In this

section, we introduce some more advanced functionality of RHRV, or functional-

ity that has narrower applications than the one presented in the previous chapter.

Thus, we will introduce some new functions (EditNIHR, CalculateSpectrogram and

PlotSpectrogram) and we will finish the description of all the function parameters

introduced in the previous chapter. Also, further information about the HRVData

structure will be given. Figure 5.1 shows a detailed view of the internal organization

of the HRVData structure. This figure should be used as a roadmap through the

explanations concerning the HRVData structure.
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Figure 5.1: All the fields stored in the HRVData structure.

5.1.1 Creating the structure

When a new HRVData is created using the CreateHRVData function, it contains the

following fields (among others that are not useful for the final user):

• Ext : A string that will be used as file extension by the loading/writing functions

included in the package. The default value is “hrv”.

• TimeAnalysis : This field stores the information generated using time-domain

analysis techniques. It is implemented as a list in the R language.
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• FreqAnalysis : This field stores the results of one or more frequency analysis.

Frequency analysis can be based on Fourier or on wavelets. It is implemented

as a list in the R language.

• NonLinearAnalysis : This field stores the results of one or more nonlinear anal-

ysis. It is implemented as a list in the R language.

• Verbose: Boolean flag that specifies if all the functions should return additional

information (mode verbose on). The SetVerbose function sets verbose mode on

or off.

5.1.2 Reading heart beats

After creating the empty HRVData structure we will usually read the corresponding

data file containing the heart beat positions. For the sake of simplicity, we keep on

focussing on the ASCII files. The reader may have been wondering: “what happens

if my ASCII file is specified in milliseconds?”. We shall use the scale parameter to

overcome this issue. By setting this parameter to 1 (default value) we are indicating

that the beat positions are specified in seconds; by setting it to 0.1, we are indicating

that the beats are in deciseconds and so on. The function transforms the heart

beat positions to seconds so all the other functions can be used as before. Other

interesting parameter that can be specified by the user is the date-time when the

file was recorded (datetime parameter). This is particularly useful for following a

patient’s evolution over a set of recordings. The string format for the datetime

parameter is “DD/MM/YYYY HH:MM:SS”. Thus, let’s read the “example.beats”
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file (as in chapter 4) specifying that it was recorded on “30/04/2012 12:00:00” in

seconds:

> hrv.data = LoadBeatAscii(hrv.data, "example.beats",

+ RecordPath = "beatsFolder", scale = 1,

+ datetime = "30/04/2012 12:00:00")

** Loading beats positions for record: example.beats **

Path: beatsFolder

Scale: 1

Date: 30/04/2012

Time: 12:00:00

Number of beats: 17360

When importing the data into the HRVData structure, two new fields are created

(see Figure 5.1):

• Datetime: Date and time associated with the record.

• Beat : A dataframe object which stores the positions of the beats in the sub-field

Time .

5.1.3 Constructing the time series

To compute the HRV time series the BuildNIHR function is used. Since we have

already used all the parameters of this function, we will focus on the HRVData

structure. As we know, this function constructs both the RR (Equation 2.1) and
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instantaneous heart rate series (Equation 2.2). Both series are stored in the Beat

dataframe of the HRVData structure: the RR series is stored in the sub-field called

RR whereas the instantaneous HR is stored in the niHR sub-field (see Figure 5.1).

5.1.4 Filtering the time series

The automatic removal of outliers is performed with the FilterNIHR function. This

function implements an algorithm that uses adaptive thresholds for rejecting or ac-

cepting beats [33]. The rule for beat acceptation or rejection is to compare the present

beat with the previous one, the following one and with an updated mean of the RR

interval. The different adaptive thresholds establish an upper limit for the relative

errors of each of these comparisons. The long parameter allows the user to specify

the number of beats that shall be used to calculate the updated mean (default value

is 50 heartbeats). Also, the last parameter permits the user to specify the initial

threshold value in % (default value is 13%). Finally, the algorithm also applies a

comparison with acceptable physiological values. The user can specify the range of

acceptable physiological values by using the minbpm and maxbpm (minimum beats

per minute and maximum beats per minute, respectively). Default values are de-

signed for human beings(minbpm=25, maxbpm=200), but they can be specified in

such a way that it may also be used by animal researchers. As an illustrative exam-

ple we could modify the last parameter in such a way that it does not allow quick

fluctuations ( by decreasing last to 1%) in our example file. Also, we could decrease
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the maxbpm parameter to 180 bpm. The results are shown in Figure 5.2 (compare

it with Figure 4.1).

> hrv.data = FilterNIHR(hrv.data, long=50, last=1, minbpm=25, maxbpm=180)

> PlotNIHR(hrv.data)
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Figure 5.2: Effects of the modification of the default values in the FilterNIHR function.

RHRV also provides functionality for manually removing the spurious heartbeats.

In order to delete outliers manually, a graphical editor can be used. The graphical

editor is launched by executing the EditNIHR function.
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> hrv.data = EditNIHR(hrv.data)

This interactive editor allows the user to select a rectangular area defined by two

points that are the top left corner and bottom right corner, respectively, of a rectan-

gle. (see Figure 5.3). The points included in this rectangle can then be removed by

pressing the “remove outliers” button. If we make a mistake in the outliers selection,

we can reset the window by pressing “clear”. The outliers removal ends when the

user presses “End”.

Figure 5.3: Manually removal of artifacts with EditNIHR.
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5.1.5 Interpolation

The uniformly sampled HR series is obtained using the InterpolateNIHR function,

which by default uses linear interpolation. However, it is possible to select a cubic

spline interpolation by setting method = “spline” (default value is method = “linear”).

Thus, as an illustrative example, let’s interpolate the RR data using splines and a

sampling frequency of 8 Hz (This is just an illustrative example, for most of the

situations 4 Hz will be enough. By setting an unnecessarily high sampling frequency,

we are overloading the computer):

> hrv.data = InterpolateNIHR (hrv.data, freqhr = 8, method = "spline")

This function creates two new fields in the HRVData structure:

• Freq HR: Sampling frequency used in the interpolation. The default sampling

frequency value is 4 Hz.

• HR: Heart Rate signal with equally spaced values at a certain sampling fre-

quency obtained from the niHR series (Figure 5.1).

5.1.6 Time analysis

The CreateTimeAnalysis function has been kept simple, in such a manner that

the user only has to specify the window that will be used to compute successive

differences of intervals (size parameter, in seconds) and the interval width of the bins

that will be used to compute the histogram (interval parameter, in milliseconds), as

shown in chapter 4.
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This function fills (one position of) the TimeAnalysis in the HRVData structure by

computing the following parameters: SDNN, SDANN, SDNNIDX, pNN50, rMSSD,

IRRR, MADRR, TINN and HRVi (see Figure 5.1 and Section 2.2.1). The size of the

window involved in the computations is also stored in the size field.

5.1.7 Frequency analysis

All the main parameters of the CalculatePowerBand function have already been

used in chapter 4. As shown in Figure 5.1, the CalculatePowerBand function fills

the corresponding FreqAnalysis data structure with the following fields:

• Type: a string identifying the type of analysis that has been used. The possible

values are either “fourier” or “wavelet”.

• ULFmin, ULFmax, VLFmin, VLFmax, LFmin, LFmax, HFmin and HFmax :

These fields store the boundaries of each frequency band.

• ULF, VLF, LF and HF : These fields store the spectrogram of the HR signal

in the ULF, VLF, LF and HF bands, respectively.

• HRV : Stores the total energy of the signal as a function of time. This Energy

time series is estimated from the spectrogram signal.

• LFHF : Stores the LF/HF ratio (Section 2.2) by dividing the LF time series by

the HF time series.

Some additional parameters are incorporated to the FreqAnalysis structure depend-

ing on the type of analysis used. When using the STFT, the size, shift and sizesp
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fields store information about the window, the window shift, and the number of

points per DFT that have been used. When using the wavelet transform, the wavelet,

bandtolerance and depth fields store information about the mother wavelet and the

tolerance used, as well as the number of levels that the algorithm has descended in

the MODWPT tree [12], [13].

RHRV provides another function for computing the spectrogram without being re-

stricted to the four bands: ULF, VLF, LF and HF. This function, called Calcu-

lateSpectrogram, uses the STFT approach. Thus, the user has to specify the size of

window (size parameter), the displacement of window (shift) and the zero-padding

(sizesp), as in the CalculatePowerBand function. The spectrogram is returned in a

real matrix in a way that, as the number of the row increases, the time increases

and, as the column’s number increases, the frequency increases. This matrix is not

stored in the HRVData structure since it can be very expensive in terms of memory.

As an example, let’s compute the spectrogram of the example file with the same

parameters used with the CalculatePowerBand function:

> # Plotting Fourier analysis

> spectrogram = CalculateSpectrogram( hrv.data ,size = 300,

+ shift = 30, sizesp = 2048)

The user can obtain a graphical representation of the spectrogram by using the image

R function. Alternatively, the user can use the PlotSpectrogram function, that also

returns the spectrogram matrix (see Figure 5.4). By using the scale function, the
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user may choose a linear axis (“linear”) or a logarithmic axis (“logarithmic”). The

user must also specify the size, shift and sizesp parameter.

> # Plotting wavelet analysis

> spectrogram = PlotSpectrogram(HRVData=hrv.data, size=300, shift=60,

+ sizesp=2048)
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Figure 5.4: Plot obtained with the PlotSpectrogram function.

Note that most of the energy shwon in Figure 5.4 is concentrated in the low frequen-

cies. To obtain a more detailed graphic in this zone of the spectrum, we can use the
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freqRange parameter. For example, if we wish to plot the spectrum in the [0, 0.2] Hz

band, we write:

> # Plotting wavelet analysis

> PlotSpectrogram(HRVData=hrv.data, size=300, shift=60,

+ sizesp=2048,freqRange = c(0,0.2))

The result of this script is shown in Figure 5.5.
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Figure 5.5: Plot obtained with the PlotSpectrogram function and the freqRange parameter.
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5.2 Reading several file formats

RHRV provides a lot of functionality for importing data files containing heart beat

positions. Supported formats include ASCII (LoadBeatAscii function), EDF (Load-

BeatEDFPlus), Polar (LoadBeatPolar), Suunto (LoadBeatSuunto) and WFDB data

files (LoadBeatWFDB) [26]. We have already dealt with the LoadBeatASCII func-

tion. In this section, we will discuss the remaining functions for reading heart beat

data.

5.2.1 Reading RR files

There exists another RHRV function that reads ASCII files: the LoadBeatRR func-

tion. This function reads ASCII files storing the RR intervals (and not the heart

beat times). The parameters of the LoadBeatRR function are exactly the same as

those of the LoadBeatAscii function, that is:

> LoadBeatRR(HRVData, RecordName, RecordPath=".", scale = 1,

+ datetime = "1/1/1900 0:0:0")

5.2.2 Reading files in WFDB format

PhysioNet [14] is a free web resource that provides large collections of recorded

physiologic signals (PhysioBank) and related open-source software (PhysioToolkit).

In most cases, a record from PhysioBank consists of at least three files, which are

named using the record name followed by different extensions that indicate their

content. Almost all records include a binary .dat file, containing digitized samples
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of one or more signals. The .hea (header) file is a short text file that describes the

signals. Most records include one or more binary annotation files. For example,

.qrs files contain an annotation for each QRS complex (heart beat) in the recording;

.apn files contain apnea annotations; etc. For the sake of simplicity, we call “WFDB

file” (WaveForm DataBase) to such a collection of files containing data on the same

recording [26]. Further details about PhysioBank can be found in the PhysioNet

website.

The RHRV package provides the LoadBeatWFDB function for reading WFDB files.

This function takes as input parameters the name of the WFDB file to be used with-

out any extension (RecordName argument), the relative path of the file (RecordPath

argument) and the extension of the file with the heart beats annotations (annotator,

its default value is “qrs”, so in most cases the user won’t have to specify it). As an

example, we are going to create a data structure that will read the “a03” register

from the PhysioBank’s Apnea-ECG database [28].

> hrv.wfdb = CreateHRVData()

> hrv.wfdb = SetVerbose(hrv.wfdb, TRUE)

> hrv.wfdb = LoadBeatWFDB(hrv.wfdb, "a03", RecordPath =".",

+ annotator = "qrs")

** Loading beats positions for record: a03 **

Path: .

Opening header file: a03.hea

No time information in header: 00:00:00
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No date information in header: 01/01/1900

Date: 01/01/1900

Time: 00:00:00

Number of beats: 34254

5.2.3 Other formats

Since the remaining functions have a similar behaviour than those we have already

discussed, we will just discuss their prototypes. The LoadBeatEDFPlus function

allows the user to read EDF+ (European Data Format) data [19]. Its format is

similar to the LoadBeatWFDB function:

> LoadBeatEDFPlus(HRVData, RecordName, RecordPath = ".",

+ annotationType ="QRS")

Finally, RHRV provides functionality for reading Polar and Suunto files with the

LoadBeatPolar and LoadBeatSuunto functions. These functions only receive as ar-

guments the record name and the record path:

> LoadBeatPolar(HRVData, RecordName, RecordPath=".")

> LoadBeatSuunto(HRVData, RecordName, RecordPath=".")

5.2.4 A general function

The LoadBeat function provides a common interface to access all the functions re-

sponsible for loading heart beats. Thus, the prototype of the LoadBeat function con-

tains all the parameters needed for the loading functions. It also offers the fileType
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fileType function called
“WFDB” LoadBeatWFDB
“Ascii” LoadBeatAscii
“RR” LoadBeatRR

“Polar” LoadBeatPolar
“Suunto” LoadBeatSuunto

“EDFPlus” LoadBeatEDFPlus

Table 5.1: LoadBeat operation depending on the fileType parameter.

parameter so the user can specify which type of file is going to be read. Depending

on the fileType value, the LoadBeat function delegates on one of the previous loading

functions. The possible values of the fileType parameter and the function that is

called are summarized in table 5.1.

Thus, if we want to read a WFDB file, we could use either the LoadBeatWFDB

function or the LoadBeat function:

> hrv.wfdb = CreateHRVData()

> hrv.wfdb = SetVerbose(hrv.wfdb, TRUE)

> hrv.wfdb = LoadBeat(hrv.wfdb, fileType = "WFDB", "a03", RecordPath =".",

+ annotator = "qrs")

** Loading beats positions for record: a03 **

Path: .

Opening header file: a03.hea

No time information in header: 00:00:00

No date information in header: 01/01/1900

Date: 01/01/1900
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Time: 00:00:00

Number of beats: 34254

5.3 Performing analysis in different intervals of a

recording

Intervals of the HR time series with pathophysiological interest may be annotated

in the so-called episode files. For example, it may be interesting to compare the

heart rate series before, during and after an apnea episode (apneas are cessations

of a patient’s respiratory airflow during the nocturnal rest) [21]. Such a study

could be useful for searching for significant differences in the HRV caused by the

apneas. The RHRV package provides functions for loading episode information.

The supported formats for this information are either ASCII (LoadEpisodesAscii)

or WFDB (LoadApneaWFDB). Episodes may also be added programmatically to

the time series using the AddEpisodes function. All episodes are stored under the

Episodes field of the HRVData structure (see Figure 5.1). The plotting functions

allow the user to include episodic information in the graphics. We will discuss all

these points in more detail below.

5.3.1 AddEpisodes

The simplest way of adding episodic information is using the AddEpisodes function.

AddEpisodes adds information of episodes by specifying the initial times of each
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episode (InitTimes argument, in seconds), the names of the episodes (Tags), the

duration of each episode (Durations, in seconds) and a numerical identifier for

each episode(Values). The Values field is useful for those episodes that store some

numerical values. For example, an apnea episode could store information about the

Oxygen saturation level in the Values field. Note that all the parameters specified

by the user will be stored in the HRVData structure in its corresponding fields as

shown in Figure 5.1.

Let us read our example file“example.beats”and add three episodes to it: a first type

“A” episode in the [700, 1600] s interval; a second episode of the same type as the

first one (“A”) in the [5000, 5600] s interval; and a third episode in the [2000, 4500] s

interval of type “B”:

> hrv.data = CreateHRVData( )

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = SetVerbose(hrv.data,TRUE)

> hrv.data = AddEpisodes(hrv.data, InitTimes = c(700,5000,2000),

+ Tags = c("A","A","B"), Durations = c(900,600,2500), Values = c(0,0,0))

** Adding new episodes **

Added 3 episodes from file

Number of episodes: 3
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5.3.2 Plotting episodic information

The plotHR and PlotNIHR functions allow the user to include episodic information

in the plot. The user can specify a list of tags to specify which episodes are included

in the plot (Tag parameter). Tag=“all” plots all episodes present in the data. Thus

we could execute, after the code of the previous paragraph:

> hrv.data = BuildNIHR(hrv.data)

> # plot all tags

> PlotNIHR(hrv.data, Tag="all")

> hrv.data = InterpolateNIHR(hrv.data, freqhr = 4)

> # Plot only the "A" episodic information

> PlotHR(hrv.data , Tag=c("A"))

The plots obtained with PlotNIHR and PlotHR are shown in Figures 5.6 and 5.7,

respectively.

RHRV is also capable of including episodic information when representing the spec-

trograms obtained with the CalculatePowerBand. For this purpose, the PlotPower-

Band includes the Tag input parameter. Thus, if we want to perform a frequency

analysis and plot the power bands with the episodic information that we have added

in the previous paragraphs, we could execute:

> hrv.data = CreateFreqAnalysis(hrv.data)

> # perform frequency analysis
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Figure 5.6: Episodic information in the Non interpolated Heart Rate time series.

> hrv.data = CalculatePowerBand( hrv.data , indexFreqAnalysis= 1,

+ type = "wavelet", wavelet = "la8", bandtolerance = 0.01, relative = FALSE)

> # plot episodic information

> PlotPowerBand(hrv.data, indexFreqAnalysis = 1, ymax = 5000, ymaxratio = 50,

+ Tag = "all")

The resulting plot is shown in Figure 5.8.
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Figure 5.7: Episodic information in the interpolated Heart Rate time series.

5.3.3 LoadEpisodesAscii

The LoadEpisodesAscii function allows the user to read episodic information stored

in an ASCII file saving it into the HRVData data structure. The expected format of

each line is:

InitTime Tag Duration Value

HH:MM:SS “Tag name” double integer
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Figure 5.8: Episodic information in all the power bands.

The first column is the start time of the episode with the “HH:MM:SS” format. The

second column serves the same purpose as the Tag parameter in AddEpisodes. The

third column specifies the duration of the episode in seconds. Finally, the fourth

column assigns a numerical value for each episode ( the same function performed by

the Value parameter in the AddEpisodes function).
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It must be taken into account that the LoadEpisodesAscii function skips the first

line of the ASCII file because it assumes that the first line will contain a header (the

format of this header does not really matter). If there is no header line in the file,

the user can specify it to the function using the header parameter (by default, it is

setted to TRUE).

As an example, we are going to create an ASCII file containing the same information

as the episodes “A” and “B” that we programmatically introduced in the AddE-

pisodes(5.3.1) paragraph. We will also add information about a “C” episode that the

LoadEpisodesAscii function will skip. We shall call this file “annotationsFile.txt”.

This file will have the following content:

InitTime Type Duration Value

00:11:40 ”A” 900 1

01:23:20 “A” 600 2

00:33:20 ”B” 2500 3

01:00:00 ”C” 100 4

The LoadEpisodesAscii function takes as input parameters: the absolute path to

the episodes file to be read (FileName), the types of episodes that should be read

(Tag) and the time (“HH:MM:SS”) at which the recording began (InitTime). This

last parameter enables reading those files in which the initial time of episodes was

specified in absolute time, and not relative to the start of the recording. Since we

wrote relative times in the ASCII file, we should use InitTime=“0:0:0”. Thus, in

order to read just the episodes tagged as “A” from our file, we could write:
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> hrv.data = CreateHRVData( )

> hrv.data = LoadBeatAscii(hrv.data,"example.beats","beatsFolder")

> hrv.data = SetVerbose(hrv.data,TRUE)

> hrv.data = LoadEpisodesAscii(hrv.data,Tag=c("A"),InitTime="0:0:0",

+ FileName="beatsFolder/annotationsFile.txt")

** Loading episodes file: beatsFolder/annotationsFile.txt **

Path: .

Tag: A

Initial time: 00:00:0.000

Data includes values associated to episodes

Loaded 2 episodes from file

Number of episodes: 2

5.3.4 LoadApneaWFDB

The LoadApneaWFDB function allows the user to load apnea annotations from a

WFDB file (the user must ensure that there is a file with the .apn extension between

the WFDB recording’s files). The function takes as input parameters the name of

the WFDB file (RecordName), the path to the WFDB file (RecordPath) and a name

for the apnea episodes (Tag, its default value is “APNEA”). The use of this function

requires the installation of the WFDB tools (see chapter 3).

As an illustrative example, we are going to read the apnea episodes for the “a03” file

of the ApneaECG database from PhysioBank (see the Reading files in WFDB format

paragraph). The plot of the non interpolated HR series is shown in Figure 5.9.
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> hrv.wfdb = CreateHRVData()

> hrv.wfdb = SetVerbose(hrv.wfdb, TRUE)

> hrv.wfdb = LoadBeat(hrv.wfdb, fileType = "WFDB", "a03", RecordPath =".",

+ annotator = "qrs")

** Loading beats positions for record: a03 **

Path: .

Opening header file: a03.hea

No time information in header: 00:00:00

No date information in header: 01/01/1900

Date: 01/01/1900

Time: 00:00:00

Number of beats: 34254

> hrv.wfdb = LoadApneaWFDB(hrv.wfdb, RecordName="a03",Tag="Apnea",

+ RecordPath=".")

** Loading apnea episodes for record: a03 **

Path: .

Header info already present for: a03

Command: rdann -r a03 -a apn

Number of labels: 518

** Adding new episodes **

Added 11 episodes from file

Number of episodes: 11
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> hrv.wfdb = BuildNIHR(hrv.wfdb)

** Calculating non-interpolated heart rate **

Number of beats: 34254

> PlotNIHR(hrv.wfdb,Tag="all")

** Plotting non-interpolated instantaneous heart rate **

Number of points: 34254

Episodes in plot: Apnea

No of episodes: 11

No of classes of episodes: 1

5.3.5 Analyzing HRV inside and outside the episodes

RHRV provides basic functionality for comparing data inside and outside each

episode. The simplest function that the user can use for this purpose is the

SplitHRbyEpisodes function, that splits the interpolated heart rate series into two

vectors containing samples inside (the “InEpisodes” vector) and outside the episode

(the “OutEpisodes” vector) specified in the Tag argument. For example, if we want

to compare the HR series inside and outside the apnea episodes from the “a03” file,

we could use:

> # remember to interpolate the Heart Rate series!!

> hrv.wfdb = InterpolateNIHR (hrv.wfdb, freqhr = 4)
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Figure 5.9: Loading Apnea episodes using the LoadApneaWFDB function.

** Interpolating instantaneous heart rate **

Frequency: 4Hz

Number of beats: 34254

Number of points: 125383

> splitting.data = SplitHRbyEpisodes(hrv.wfdb, Tag = c("Apnea"))

** Splitting heart rate signal using episodes **

Using episodes with tag: Apnea
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Number of episodes: 11

Inside episodes: 58919 points

Outside episodes: 66464 points

It is straightforward to use a statistical function for comparing both vectors. For

example:

> cat("comparing the mean inside and outside Apnea episodes...\n")

comparing the mean inside and outside Apnea episodes...

> cat("Apnea mean: ",mean(splitting.data$InEpisodes),"\n")

Apnea mean: 61.94101

> cat("Normal mean: ",mean(splitting.data$OutEpisodes),"\n")

Normal mean: 69.11033

Although the previous example illustrates how to access the data inside and outside a

certain type of episode, we could have used the AnalyzeHRbyEpisodes for comparing

its means. This function analyzes the heart rate series evaluating the desired function

(func parameter) inside and outside the episodes of interest (Tag parameter). Thus,

we could have executed:

> cat("comparing the mean inside and outside the Apnea episodes...\n")

comparing the mean inside and outside the Apnea episodes...
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> result = AnalyzeHRbyEpisodes(hrv.wfdb, Tag ="Apnea", "mean")

** Applying function to heart rate signal using episodic information **

Function: "mean"()

Using episodes with tag: Apnea

** Splitting heart rate signal using episodes **

Using episodes with tag: Apnea

Number of episodes: 11

Inside episodes: 58919 points

Outside episodes: 66464 points

> cat("Apnea mean:: ",result$resultIn,"\n")

Apnea mean:: 61.94101

> cat("Normal mean: ",result$resultOut,"\n")

Normal mean: 69.11033

There also exists a splitting function that separates the spectral power per band

in two lists using a specific episode type: the SplitPowerBandByEpisodes (however

there is no analogue function to the AnalyzeHRbyEpisodes function). In addition

to the Tag parameter, the SplitPowerBandByEpisodes receives as input parameters,

the HRVData structure (HRVData) and the frequency analysis index to which apply

the splitting function (indexFreqAnalysis). The function returns a list with two lists:

“InEpisodes”and“OutEpisodes”, both lists include the ULF, VLF, LF and HF bands:

93



5.3. PERFORMING ANALYSIS IN DIFFERENT INTERVALS OF A
RECORDING

> # ...

> hrv.wfdb = CreateFreqAnalysis(hrv.wfdb)

** Creating frequency analysis

Data has now 1 frequency analysis

> hrv.wfdb = CalculatePowerBand( hrv.wfdb , indexFreqAnalysis= 1,

+ type = "wavelet", wavelet = "la8", bandtolerance = 0.01, relative = FALSE)

** Calculating power per band **

** Using Wavelet analysis **

Power per band calculated

> splitting.data = SplitPowerBandByEpisodes(hrv.wfdb,

+ indexFreqAnalysis = 1, Tag = c("Apnea"))

** Splitting power bands using episodes**

Using episodes with tag: Apnea

Number of episodes: 11

No. of frames: 125383

No. of frames in episodes: 58931

No. of frames outside episodes: 66452

> cat("comparing the mean power in the LF band

+ inside and outside A episodes...\n")

comparing the mean power in the LF band

inside and outside A episodes...
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> cat("LF power in Apnea episodes: ",

+ mean(splitting.data$InEpisodes$LF),"\n")

LF power in Apnea episodes: 3194.988

> cat("LF power in Normal episodes: ",

+ mean(splitting.data$OutEpisodes$LF),"\n")

LF power in Normal episodes: 811.5181

5.4 Storing and reading HRVData

In order to save interesting results RHRV provides functionality for storing and

reading HRVData structures. For example, if the user wants to store the hrv.wfdb

structure from the previous section, he just has to write:

> WriteToFile(hrv.wfdb, name="HRVstructure")

** Writing file: HRVstructure.hrv

File HRVstructure.hrv already exists

18468167 bytes written

The WriteToFile function will store the HRVData structure in a file called

“HRVstructure.hrv”. Note that the “.hrv” suffix has been added. Additionally,

the user may specify the behaviour of the function if the file already exists with the

overwrite parameter. The default value overwrites existing files. If the user wants

to prevent losing previous data stored in the “HRVstructure.hrv” file, he can write:
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> WriteToFile(hrv.wfdb, name="HRVstructure", overwrite = FALSE)

Error in WriteToFile(hrv.data, name = "HRVstructure", overwrite = FALSE) :

--- File exists... Not overwriting it!! ---

--- Quitting now!! ---

Note that the function informs about the existence of a previous file named

“HRVstructure.hrv”.

In order to read HRVData structures that had been previously stored, the Read-

FromFile function is provided:

> data = ReadFromFile(name = "HRVstructure", verbose = TRUE)

** Reading file: HRVstructure.hrv

18468167 bytes read

Note that the “.hrv” prefix is not included in the file’s name, although the HRVData

structure was stored as “HRVstructure.hrv”. The user can control the verbosity level

using the verbose argument.
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Chapter 6

HRV nonlinear analysis

6.1 An introduction to nonlinear analysis tech-

niques

RHRV implements all the nonlinear statistics presented in Section 2.2.3. As we

shall see in the next sections, most of the nonlinear statistics share a common

name convention for their functions: the CalculateX, the EstimateX and the PlotX

functions, being X the name of the statistic (for example corrDim). This naming

convention reflects that these statistics share a similar estimation process: first,

the CalculateX function performs some heavy computations that are required for

obtaining the value of the statistic. The statistic is then obtained as the slope of

a regression involving these computations. The regression is performed with the

EstimateX function. The PlotX function draws the variables involved in the re-
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gression, which may be useful to check if the statistics follow the expected behaviour.

In order to load the example file that we shall use to illustrate the nonlinear functions

included in RHRV, we may execute:

> library(RHRV)

> hrv.data = CreateHRVData()

> hrv.data = LoadBeatAscii(hrv.data, RecordName="nonlinearHB.beats",

+ RecordPath="beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

The beats from this file were generated synthetically from a nonlinear process in

order to show the expected behaviour of a truly nonlinear RR time series and avoid

some issues when dealing with a noisy process. Thus, this file has no physiological

meaning. An example of nonlinear HRV analysis with a real RR series is given in

Section 6.2.

Before performing the nonlinear analysis we must create the data analysis structure

that will store all the results from the analysis: the NonLinearAnalysis list, under

the HRVData structure. Just as with the others analysis structures, each nonlinear

analysis structure is identified by a unique number. To create an analysis structure,

the CreateNonLinearAnalysis function is used.

> hrv.data = CreateNonLinearAnalysis(hrv.data)
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** Creating non linear analysis

Data has now 1 nonlinear analysis

In the next few sections we shall present the basics for performing the most widely-

used nonlinear analysis algorithms (Although some of the algorithms will not be

presented here, but in Section 6.2). Due to the heterogeneity of the nonlinear algo-

rithms, we will also explain how to access the computations for each algorithm as

they are presented.

6.1.1 Nonlinearity Test

Before applying nonlinear analysis to the RR time series we should ensure that

the HR shows, indeed, some degree of nonlinearity. If we don’t , there is a risk of

obtaining unreliable results. There exist two functions in RHRV that allow running

nonlinearity tests: NonlinearityTests and SurrogateTest.

The NonlinearityTests permits running a wide variety of nonlinearity tests including:

two tests for neglected nonlinearity that are based on neural networks, the Keenan

test for nonlinearity, the McLeod and Li test for nonlinearity and the Tsay’s test.

Surrogate data testing tests the null hypothesis that the data was generated from

a stationary linear stochastic process with Gaussian inputs. Surrogate data testing

consists on generating a surrogate data set showing the same linear properties of

the RR time series. Then, a statistic is calculated for the RR time series and all the

surrogate set. If the value of the statistic is significantly different for the RR series
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and all the surrogate set, the null hypothesis is rejected and nonlinearity assumed.

In practice, the null hypothesis is rejected when the statistic calculated for the RR

series is smaller or larger than those calculated for the surrogate set.

Both functions take as input parameters the HRVData structure and the in-

dexNonLinearAnalysis. The indexNonLinearAnalysis is an integer denoting the

NonLinearAnalysis structure that will contain the results of the nonlinear analysis.

Additionally, the SurrogateTest allows the user to specify the significance of the test

(significance parameter) and specify the function that will compute the discriminat-

ing statistic (useFunction) as well as its parameters. Finally, it’s also possible to

obtain a graphical representation of the statistic values of both surrogate data and

the RR time series using the doPlot parameter.

The next lines show how to use both functions for nonlinearity testing:

> # Testing

> hrv.data = NonlinearityTests(hrv.data)

--- Performing nonlinearity tests ---

** Teraesvirta's neural network test **

Null hypothesis: Linearity in "mean"

X-squared = 903.5991 df = 2 p-value = 0

** White neural network test **

Null hypothesis: Linearity in "mean"
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X-squared = 877.33 df = 2 p-value = 0

** Keenan's one-degree test for nonlinearity **

Null hypothesis: The time series follows some AR process

F-stat = 516.1898 p-value = 8.409783e-109

** McLeod-Li test **

Null hypothesis: The time series follows some ARIMA process

Maximum p-value = 0

** Tsay's Test for nonlinearity **

Null hypothesis: The time series follows some AR process

F-stat = 29.45 p-value = 0

** Likelihood ratio test for threshold nonlinearity **

Null hypothesis: The time series follows some AR process

Alternativce hypothesis: The time series follows some TAR process

X-squared = 2600.526 p-value = 0

> hrv.data = SurrogateTest(hrv.data, significance = 0.05,

+ useFunction = timeReversibility, tau=4, doPlot = TRUE)

Computing statistics

Null Hypothesis: Original data comes from a linear stochastic process

Reject Null hypothesis: Original data's statistic is the greatest one
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Figure 6.1: Surrogate data testing.

The SurrogateTest uses the timeReversibility function from the nonlinearTseries

package. This function implements the third-order statistic

ψ(τ) =
1

N − τ

N∑
i=τ+1

(sn − sn−τ )3,

that is useful for measuring the asymmetry of a series under time reversal. Since

linear stochastic series are symmetric under time reversal, this statistic may be used

for testing if the data was generated from a stationary linear stochastic process (the

null hypothesis). The tau parameter is a parameter of the timeReversibility function

that sets τ = tau. It must be noted that the discrimination power of the time
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simmetry test is low. We have use it here for illustrative purposes. Figure 6.1 shows

the results of the surrogate data testing.

6.1.2 Phase space reconstruction

As exposed in Section 2.2.3.1 the Takens embedding theorem provides a method for

phase space reconstruction. However, it does not provide information on how to

select τ and m parameters. Fortunately, the RHRV package provides functionality

for estimating both parameters.

6.1.2.1 Time lag estimation

In practical applications, the τ parameter is firstly selected. Then, the embedding

dimension is estimated for a fixed value of the τ parameter.

The τ parameter can be estimated in RHRV by using the CalculateTimeLag function.

This function selects the time lag based on the following reasoning: if the time lag

used to build the Takens’ vectors is too small, the coordinates will be too highly

temporally correlated and the embedding will tend to cluster around the diagonal in

the phase space. If the time lag is chosen too large, the resulting coordinates may be

almost uncorrelated and the resulting embedding will be very complicated. There is

a wide variety of methods for estimating an appropriate time lag based on the study

of the autocorrelation function of a given time series:

• Select the time lag where the autocorrelation function decays to 0 (first.zero

method).
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• Select the time lag where the autocorrelation function decays to 1/e

(first.e.decay method).

• Select the time lag where the autocorrelation function reaches its first minimum

(first.minimum method).

• Select the time lag where the autocorrelation function decays to the value

specified by the user (first.value method and value parameter).

The CalculateTimeLag function takes as input parameters the HRVData and the

method, value, lagMax and doPlot parameters. The method parameter indicates the

method that we shall use to estimate the time lag . Its value must be “first.zero”,

“first.e.decay”, “first.minimum” or “first.value”. The value parameter denotes the

value that the autocorrelation function must cross in order to select the time lag

if the “first.value” method is used. The lagMax parameter specifies the maximum

lag at which to calculate the autocorrelation function. By default, the length of the

timeSeries is used. Finally, the logical doPlot parameter indicates if a plot of the

autocorrelation function is shown or not.

In the following example we estimate a proper time lag by using the different methods

explained above:

> # method "first.zero"

> CalculateTimeLag(hrv.data,method="first.zero",lagMax=100)
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--- Calculating optimum time lag ---

--- Time Lag = 1 ---

[1] 1

> # method "first.minimum"

> CalculateTimeLag(hrv.data,method="first.minimum",lagMax=100,

+ doPlot=FALSE)

--- Calculating optimum time lag ---

--- Time Lag = 1 ---

[1] 1

> # method "first.value"

> CalculateTimeLag(hrv.data,method="first.value",value=0.1,

+ lagMax=100, doPlot=FALSE)

--- Calculating optimum time lag ---

--- Time Lag = 1 ---

[1] 1

> # method "first.e.decay" (default)

> kTimeLag = CalculateTimeLag(hrv.data,lagMax=100, doPlot=FALSE)

--- Calculating optimum time lag ---

--- Time Lag = 1 ---

> print(kTimeLag)
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[1] 1

Most of the nonlinear algorithms in RHRV accept as input both time lag and

embedding dimension parameters. If they are not specified, RHRV estimates them

by using the functions explained in this section and the next one. However we

strongly recommend to estimate them just once because of computational efficiency.

Thus, we store the kTimeLag parameter to use it in all the examples of this section.

Figure 6.2 shows the autocorrelation function used in the time lag estimation.
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Figure 6.2: Autocorrelation function of the niHR time series used for calculate the opti-
mum TimeLag.
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6.1.2.2 Embedding dimension estimation

Once the time lag has been estimated, it is possible to obtain a proper embedding

dimension by using the algorithm explained in [8]. The Cao’s algorithm uses 2

functions in order to estimate the embedding dimension from a time series: the

E1(d) and the E2(d) functions, where d denotes the dimension.

E1(d) stops changing when d is greater than or equal to the embedding dimension

m, staying close to 1. On the other hand, E2(d) is used to distinguish deterministic

signals from stochastic signals. For deterministic signals, there exists some d fulfilling

E2(d) 6= 1. For stochastic signals, E2(d) is approximately 1 for all the values. The

CalculateEmbeddingDim function implements this algorithm in the RHRV package.

The CalculateEmbeddinDim takes as input parameters the HRVData structure, the

number of points of the time series to be used for estimating the embedding di-

mension (numberPoints); the time lag calculated in the previous Section (timeLag);

the maximum possible embedding dimension (maxEmbeddingDim); the threshold

that E1(d) must cross for considering that it is close to the limit value 1 (threshold ;

the default value is 0.95); the maximum relative change in E1(d) with respect to

E1(d − 1) in order to consider that the E1 function has been stabilized and that it

will stop changing (maximumRelativeValue; the default value is 0.01) and the doPlot

parameter (If TRUE a plot of E1(d) and E2(d) is shown).
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In the following example we estimate a proper embedding dimension using the time

lag calculated in the previous section. Figure 6.3 shows the resulting plot.

> kEmbeddingDim = CalculateEmbeddingDim(hrv.data,

+ numberPoints = 10000,

+ timeLag = kTimeLag,

+ maxEmbeddingDim = 15)

--- Calculating optimum embedding dimension ---

>
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Figure 6.3: Estimation of the embedding dimension using the Cao’s algorithm.

108



6.1. AN INTRODUCTION TO NONLINEAR ANALYSIS TECHNIQUES

We store the result in the kEmbeddingDim variable in order to use it in the remainder

of this section.

6.1.3 Computing nonlinear statistics

6.1.3.1 The classic correlation dimension

In order to calculate the correlation dimension of our RR time series we can use the

CalculateCorrDim function. This function takes as input the HRVData structure

to be analyzed and the index of the NonlinearAnalysis structure that shall store

the results. The embedding dimensions in which the CalculateCorrDim will be

computed are specified with the minEmbeddingDim and the maxEmbeddingDim

parameters (remember that we should compute the correlation dimension for several

embedding dimensions). The time lag needed for reconstructing the phase space is

provided by the timeLag parameter. The minRadius and maxRadius parameters

specify the radius in which the correlation sum is going to be calculated. The

number of points used to compute this radius range can be specified with the

pointsRadius parameter (i.e. we shall use pointsRadius points in order to cover

the [minRadius,maxRadius] interval). The Theiler window is specified using the

theilerWindow parameter. Finally, a log-log plot of the correlation sum Vs. the

radius can be obtained by setting doPlot = TRUE (default).

For analyzing our hrv.data structure we shall use the embedding dimension and

time lag obtained in Section 6.1.2. Thus, we set timeLag = kTimeLag and we se-
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lect a sequence of dimensions surrounding kEmbeddingDim. For example, we may

use minEmbeddingDim = kEmbeddingDim - 1 and maxEmbeddingDim = kEmbed-

dingDim + 2. In order to select the radius we have to take into account that we

are analyzing RR intervals in milliseconds. Thus, the selection minRadius = 1 and

maxRadius = 100 will probably cover the most important range of the correlation

sum C(r). By selecting pointsRadius = 100, the correlation sum C(r) will be com-

puted in r = 1, 2, .., 100. In order to select a proper Theiler window, the autocor-

relation function may be used. Figure 6.2 shows that the RR series is practically

uncorrelated after the time lag 10. In order to be sure that we got rid of the tempo-

ral correlations we set theilerWindow = 20. Finally, we set doPlot=FALSE (later,

we will plot the correlation sum with the PlotCorrDim function).

> my.index = 1

> hrv.data = CalculateCorrDim(hrv.data,

+ indexNonLinearAnalysis = my.index,

+ minEmbeddingDim = kEmbeddingDim - 1,

+ maxEmbeddingDim = kEmbeddingDim + 2,

+ timeLag = kTimeLag, minRadius=1,

+ maxRadius=100, pointsRadius = 100,

+ theilerWindow = 20, doPlot = FALSE)

--- Computing the Correlation sum ---

As usual, we may use the $ operator from the R language to access the correlation

sum calculated with the CalculateCorrDim function and stored under the correla-

tion$computations field of the NonLinearAnalysis structure:
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> corr.struct = hrv.data$NonLinearAnalysis[[my.index]]$correlation

> corrSum = corr.struct$computations

Now, in order to access to the corrSum attributes we may write:

> # Let's print the four first rows and columns of the correlation matrix

> print(corrSum$corr.matrix[1:4,1:4])

100 95.4548456661834 91.1162756115489 86.9749002617783

4 0.9988547 0.9917903 0.9854796 0.9778878

5 0.9984679 0.9896422 0.9818793 0.9728309

6 0.9980811 0.9874943 0.9782899 0.9678070

7 0.9972923 0.9849646 0.9743409 0.9624882

> # Access the radius and embedding dimensions used for computations

> radius = corrSum$radius

> embeddingDims = corrSum$embedding.dims

Note the correlation matrix stores all the correlation sums that have been computed.

Each row stores the correlation sum for a concrete embedding dimension whereas

each colum stores the correlation sum for a specific radius. Note that the names

of the matrix dimensions denote the embedding dimension and the radius (in

descending order).

A graphical representation of the correlation sum can be obtained by using the Plot-

CorrDim function. This function shows a log-log plot of the correlation sum Vs the

radius and the local slopes of log10(C(r)) Vs log10(C(r)).
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> PlotCorrDim(hrv.data,indexNonLinearAnalysis=my.index)
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Figure 6.4: Correlation sums calculation.

In order to get an estimation of the correlation dimension, the EstimateCorrDim

function can be used. This function estimates the correlation dimension of the RR

time series by averaging the slopes of the embedding dimensions specified in the

useEmbeddings parameter. The slopes are determined by performing a linear re-

gression over the radius’ range specified in regressionRange. The user must select
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the dimensions and radius in which the slopes of the correlation sum are approxi-

mately equal. If such a region does not exist, the estimation should be discarded. In

our case, we may select all the embedding dimensions and set the regressionRange

to [1.5, 10] (see Figure 6.4). If doPlot=TRUE a graphic of the regression over the

data is shown. The results are returned into a new field called statistic under the

hrv.data$NonLinearAnalysis[[indexNonLinearAnalysis]]$correlation list:

> hrv.data = EstimateCorrDim(

+ hrv.data,

+ indexNonLinearAnalysis=my.index,

+ regressionRange=c(1.5,10),

+ useEmbeddings=(kEmbeddingDim-1):(kEmbeddingDim+2),

+ doPlot=TRUE)

--- Estimating the Correlation dimension ---

--- Correlation dimension = 1.828973 ---

> # We may add a legend to the plot

> legend(x=10,y=-3, lty = rep(1,3), col = 1:3,

+ title="Embedding dimension",

+ legend = (kEmbeddingDim-1):(kEmbeddingDim + 2))

> cat("The correlation dimension is ",

+ hrv.data$NonLinearAnalysis[[my.index]]$

+ correlation$statistic,"\n")

The correlation dimension is 1.828973
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The plot obtained in the estimation process is shown in Figure 6.5. It must be noted
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Figure 6.5

that all the nonlinear statistics following the the CalculateX -EstimateX -PlotX pro-

cedure store their results in the two fields presented in this section: the computations

field shall store the calculations whereas that the statistic field shall store the final

estimation of the statistic being computed.

Since the correlation dimension is the most important of the nonlinear dimensions,

the generalized dimensions (including the information dimension) shall be presented

in Section 6.2.
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6.1.3.2 Sample entropy

In Section 2.2.3.5 we saw that in order to compute the sample entropy of order q

(Hq) of a time series we first have to calculate:

hq(m, r) = log

(
Cq(m, r)

Cq(m+ 1, r)

)
,

and then, we may obtain Hq by taking the limit:

Hq = lim r→0
m→∞

hq(m, r).

Thus, in RHRV, in order to use the CalculateSampleEntropy function a “corrDim”

object with several embedding dimensions must exist under the NonLinearAnalysis

structure. Also, the embedding dimensions must be high enough (in order to

“simulate” the limit m→∞).

Let’s compute the sample entropy of our example file. First of all, we shall compute

several correlations sums using high embedding dimensions. In this example, we shall

use at least four times the optimum embedding dimension kEmbeddingDim. Then,

we use the CalculateSampleEntropy function to compute the hq(m, r) function. This

function is quite simple since only takes as input parameters the HRVData being

analyzed, the indexNonLinearAnalysis and the boolean argument doPlot (allowing

to obtain a plot of hq(m, r)).

> hrv.data = CreateNonLinearAnalysis(hrv.data)
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** Creating non linear analysis

Data has now 2 nonlinear analysis

> my.index = 2

> hrv.data = CalculateCorrDim(hrv.data,

+ indexNonLinearAnalysis = my.index,

+ minEmbeddingDim = 4*kEmbeddingDim,

+ maxEmbeddingDim = 4*kEmbeddingDim+5,

+ timeLag = kTimeLag, minRadius = 1,

+ maxRadius = 100, pointsRadius = 100,

+ theilerWindow = 20, doPlot = FALSE)

--- Computing the Correlation sum ---

> hrv.data = CalculateSampleEntropy(hrv.data,

+ indexNonLinearAnalysis= my.index,

+ doPlot = FALSE)

--- Computing the sample entropy of order 2 ---

We can also plot the hq(m, r) function with the PlotSampleEntropy function. The

resulting figure is shown in Figure 6.6.

> PlotSampleEntropy(hrv.data, indexNonLinearAnalysis=my.index)

Since we require Hq not to depend on m nor r, we shall select a radius range in which

the hq(m, r) is approximately flat. Also, the height of this flat region should be ap-

proximately the same for some embedding dimensions (this height will be the value
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Figure 6.6: Sample entropy computations.

of Hq). The EstimateSampleEntropy function takes as input the radius range (re-

gressionRange) and the embedding dimensions selected (useEmbeddings) to compute

an estimation of the sample entropy Hq.

> hrv.data = EstimateSampleEntropy(hrv.data,

+ indexNonLinearAnalysis=my.index,

+ regressionRange=c(10,20),

+ useEmbeddings = 20:22,

+ doPlot = TRUE)

--- Computing the sample entropy---

--- Sample entropy with its order: ---
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20 21 22

0.2930925 0.2975794 0.3095050

Figure 6.7 shows the plot generated by the EstimateSampleEntropy function.

The results of the sample entropy estimations are stored under the sampleEntropy

field of the NonLinearAnalysis structure as expected: The calculations field stores

hq(m, r) whereas that the statistic field stores the estimate of the sample entropy.

The attributes of the calculations field can be accessed as usual using $. calcula-

tions$sample.entropy returns a matrix containing the hq(m, r) function (the rows

store the computations for an specific embedding whereas that the columns depend

on the radius. calculations$radius and calculations$embedding.dims return the radius

and the embedding dimensions used for calculations:

> se = hrv.data$NonLinearAnalysis[[my.index]]$

+ sampleEntropy$calculations

> # obtaining the h_q(m,r) function, the radius and the embedding dimensions

> sample.function = se$sample.entropy

> radius = se$radius

> dims = se$embedding.dims

> # obtaining the sample entropy estimation

> estimation =

+ hrv.data$NonLinearAnalysis[[my.index]]$sampleEntropy$statistic

> cat("The sample entropy is ")
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The sample entropy is

> print(estimation)
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Figure 6.7: Sample entropy estimation.

6.1.3.3 Maximum Lyapunov exponent

As presented in Section 2.2.3.6, the first step in order to calculate the maximum

Lyapunov exponent should be computing the S(t) function. In RHRV, the S(t) shall

be estimated with the CalculateMaxLyapunov function. The CalculateMaxLyapunov
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function will average the divergence of several reference points in a m-dimensional

space. The minEmbeddingDim, maxEmbeddingDim and timeLag specify the pa-

rameters for the phase space reconstruction. The number of reference points that

the routine will try to use in order to compute the divergence is specified with

the minRefPoints parameter. A point in the phase space is considered to be a

reference point if there exist a minimum number of close neighbours. 500 points are

usually enough (default). The number of close neighbours needed to be considered a

reference point can be specified with the minNeighs parameter (default value is 5).

The radius specifies the maximum distance in which the routine will look for close

neighbours. Since we are working with the RR time series, a radius in the radius’

range [1− 10] ms seems a proper choice for selecting very close phase space points.

In order to compute the maximal Lyapunov exponent for our example file we could

write:

> my.index = 1

> hrv.data = CalculateMaxLyapunov(

+ hrv.data,

+ indexNonLinearAnalysis = my.index,

+ minEmbeddingDim= kEmbeddingDim,

+ maxEmbeddingDim= kEmbeddingDim+2,

+ timeLag = kTimeLag,
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+ radius = 3, theilerWindow = 20,

+ doPlot = FALSE)

--- Computing the divergence of the time series ---

As usual, the user should plot S(t) Vs t when looking for the maximal Lyapunov ex-

ponent. This can be done using the doPlot parameter of the CalculateMaxLyapunov

routine or using the PlotMaxLyapunov function.

> PlotMaxLyapunov(hrv.data, indexNonLinearAnalysis = 1)

The resulting plot is shown in Figure 6.8. After plotting the S(t) function we should

check if S(t) shows a linear behaviour for some temporal range. If that’s the case,

its slope is an estimate of the maximal Lyapunov exponent per unit of time. The

EstimateMaxLyapunov routine allows the user to get always an estimate of the

maximal Lyapunov exponent, but the user must check that there is a linear region

in the S(t) Vs t. If such a region does not exist, the estimation should be discarded.

In our example we found a strong linear region in the [1, 6] interval. The regression

performed by the EstimateMaxLyapunov is shown in Figure 6.9.

> hrv.data = EstimateMaxLyapunov(

+ hrv.data,

+ indexNonLinearAnalysis = my.index,

+ regressionRange = c(1,6),

+ useEmbeddings = (kEmbeddingDim):(kEmbeddingDim+2),

+ doPlot = TRUE)
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--- Estimating the Maximum Lyapunov exponent ---

--- Maximum Lyapunov exponent = 0.4863784 ---
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Figure 6.8: Divergence computations for the maximum Lyapunov exponent.

As always, we can access the computations under the NonLinearAnalysis list. The

divergence computations are stored under the lyapunov$computations list of the Non-

LinearAnalysis structure. The maximum Lyapunov exponent is stored under the

lyapunov$statistic field.

> lyapunov.results = hrv.data$NonLinearAnalysis[[my.index]]$lyapunov

> divergence.structure = lyapunov.results$computations

> max.exponent = lyapunov.results$statistic

> # get the S(t) function
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Figure 6.9: Maximum Lyapunov exponent estimation.

> div = divergence.structure$s.function

> tim = divergence.structure$time

> cat("The Max Lyapunov exponent is ",max.exponent,"\n")

The Max Lyapunov exponent is 0.4863784

6.1.3.4 Detrended Fluctuation Analysis

Before introducing the RHRV functionality for performing DFA, we have to review

the DFA procedure presented in Section 2.2.3.7.

1. Integrate the time series to be analyzed. The time series resulting from the

integration will be referred to as the profile.
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2. Divide the profile into N non-overlapping segments.

3. Calculate the local trend for each of the segments using least-square regression.

Compute the total error for each of the segments.

4. Compute the average of the total error over all segments and take its root

square. By repeating the previous steps for several segment sizes (let’s denote

it by t: number of beats), we obtain the so-called fluctuation function F (t).

5. If the data presents long-range power law correlations: F (t) ∝ tα, we can

estimate the exponent using regression.

6. Usually, when plotting log(F (t)) Vs log(t) we may distinguish two linear re-

gions. By performing a regression on each of them separately, we obtain two

scaling exponents, α1 (the exponent for small values of t, characterizing short-

term fluctuations) and α2 (the exponent for large values of t, characterizing

long-term fluctuations).

Steps 1-4 are performed in RHRV using the CalculateDFA function. In order to

obtain a estimate of some scaling exponent, the user must use the EstimateDFA

function specifying the regression range (window sizes used to detrend the series).

α1 is usually obtained by performing the regression in the 4 ≤ t ≤ 16 range whereas

that α2 is obtained in the 16 ≤ t ≤ 64 range (However the F(t) function must be

linear in these ranges to obtain reliable results).

Besides the HRVData, indexNonLinearAnalysis and doPlot parameters, the Calcu-

lateDFA function accepts as inputs the range of values for the window sizes that will
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be used to estimate the fluctuation function (windowSizeRange, the default value is

c(10,300)) and the number of different window sizes in that range that will be used

to estimate the Fluctuation function (npoints). The EstimateDFA and PlotDFA

functions work as usual.

> hrv.data = CalculateDFA(hrv.data,

+ indexNonLinearAnalysis = 1,

+ windowSizeRange = c(6, 300),

+ npoints = 25,

+ doPlot = FALSE)

--- Performing Detrended Fluctuation Analysis---

> hrv.data = EstimateDFA(hrv.data,

+ indexNonLinearAnalysis = 1,

+ regressionRange = c(20,100), doPlot = TRUE)

--- Estimating Scaling exponent ---

--- Scaling Exponent number 1 = 0.1442544 ---

Figure 6.10 show the regression performed over the Fluctuation function.

The dfa computations are stored in the dfa$computations list under the NonLin-

earAnalysis structure. The fluctuation function and the windows used for the

computations can be obtained using$fluctuation.function and $window.sizes on the

dfa$computations list, respectively. All the estimated exponents are stored under
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Figure 6.10: DFA.

the NonLinearAnalysis[[index]]$dfa$statistic list. It must be noted that, in this case,

the statistic field may contain more than just one value for the statistic (depending

on the regression range used).

> #obtaining the object pf class "dfa"

> dfa.object = hrv.data$NonLinearAnalysis[[1]]$dfa$computations

> windows = dfa.object$window.sizes

> fluctuation.f = dfa.object$fluctuation.function

> # get the exponent. Note the index 1 in the statistic field!!

> scaling.exp = hrv.data$NonLinearAnalysis[[1]]$dfa$statistic[[1]]

> print(scaling.exp)
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$range

[1] 20 100

$estimate

[1] 0.1442544

6.1.3.5 Recurrence Quantification Analysis

In order to perform Recurrence Quantification analysis of the RR time series

RHRV provides the RQA routine. The RQA function accepts as parameters the

HRVData, indexNonLinearAnalysis, embeddingDim, timeLag and doPlot with their

usual meaning. The user may also specify the radius (maximum distance between

two phase-space points to be considered a recurrence) and numberPoints (number

of points to be used in the RQA computation). Since this method requires heavy

computations, this last parameter is specially useful.

Let’s apply the RQA function to our example:

> hrv.data = RQA(hrv.data, indexNonLinearAnalysis = my.index,

+ embeddingDim=kEmbeddingDim, timeLag = kTimeLag,

+ radius = 2, doPlot=TRUE)

--- Plotting recurrence plot ---

> # let's see which statistics have been computed...

> names(hrv.data$NonLinearAnalysis[[1]]$rqa)
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[1] "REC" "RATIO" "DET"

[4] "DIV" "Lmax" "Lmean"

[7] "LmeanWithoutMain" "ENTR" "TREND"

[10] "LAM" "Vmax" "Vmean"

[13] "diagonalHistogram" "recurrenceRate"

> #... and access one of them

> cat("Entropy of the diagonal lines: ",

+ hrv.data$NonLinearAnalysis[[1]]$rqa$ENTR,

+ "\n")

Entropy of the diagonal lines: 1.805314

Figure 6.11 shows the resulting recurrence plot. The only issue of the previous

example is the selection of the radius... Why did we set radius=2 ? Since we are

analyzing RR time series in milliseconds it seems that a reasonable choice for ana-

lyzing close phase space points could be our selection: RR vectors whose maximum

difference is less than 2 ms. However, other similar values for the radius can be used.

An useful rule of thumb for selecting the radius parameter is choosing the radius

so that the recurrence matrix is sparse although it must contain certain vertical or

diagonal lines (deterministic structures). It must also be noted that high values for

the radius may result in very heavy computations.

As seen in the previous example, in addition to the usual statistics (presented in

table 2.1), the RQA function also returns the histogram of the length of diagonal
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Figure 6.11: Recurrence plot.

lines (diagonalHistogram) and the number of recurrence points among all possible

points depending on the distance to the main diagonal (recurrenceRate). Let’s get a

plot of the recurrence rate (see Figure 6.12):

> recurrence.rate = hrv.data$NonLinearAnalysis[[1]]$rqa$recurrenceRate

> plot(1:length(recurrence.rate),recurrence.rate,type="l",

+ xlab="Distance to main diagonal",ylab="Recurrence Rate",

+ main="Recurrence Rate")

Note the border effects in the plot. Since near the borders there are very few points,

the recurrence rate is usually biased. Of course we can ignore the end of the plot, but

we could have avoided the border effects by using the distanceToBorder parameter
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Figure 6.12: Recurrence plot.

(The points that are closer than distanceToBorder to the border of the recurrence

matrix are ignored when computing the RQA parameters).

The histogram of the length of diagonal lines is not widely used because short diago-

nals prevail. The lmin parameter can be used in order to set a minimum length of a

diagonal line to be considered in the RQA (default value is lmin = 2). Similarly, the

vmin parameter can be used in order to set the minimum length of a vertical line to

be considered in the RQA (default value is vmin = 2 ).
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6.2 Advanced nonlinear analysis techniques

All the nonlinear functions presented in 6.1 used as example file an RR time series

generated synthetically from a nonlinear process. In this section we will deal with a

real RR time series and we will present all the remaining nonlinear functions.

The example file “example2.beats” that we shall use in the next sections can be

downloaded from the project’s website http://rhrv.r-forge.r-project.org/. The file

was obtained from an ECG of one of the authors of the RHRV package and thus we

expect the file to be from a healthy subject!

> hrv.data = CreateHRVData( )

> hrv.data = LoadBeatAscii(hrv.data,

+ RecordName="example2.beats",

+ RecordPath="beatsFolder")

> hrv.data = BuildNIHR(hrv.data)

> hrv.data = FilterNIHR(hrv.data)

> hrv.data = InterpolateNIHR (hrv.data, freqhr = 4)

> hrv.data = CreateNonLinearAnalysis(hrv.data)

> hrv.data = SetVerbose(hrv.data,TRUE)

First of all, we should run the nonlinearity tests in order to make sure that the time

series shows some degree of nonlinearity. We leave the test to the reader. Now, we

shall estimate both time lag and embedding dimension parameters of our new RR

time series. As always, we first estimate the time lag. The autocorrelation function
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used for the selection of the time lag is shown in Figure 6.13. This figure also suggest

that a suitable choice for the Theiler window could be ≈ 200.

> kTimeLag = CalculateTimeLag(hrv.data, method = "first.minimum",

+ lagMax = 300)

--- Calculating optimum time lag ---

--- Time Lag = 2 ---
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Figure 6.13: Autocorrelation function for the RR time series.

We can appreciate that there is high autocorrelation in the time series even for large

time lag values. Although our estimation is reasonable it may happen that some RR

series have their “optimum” time lag at 100 or even more. However, in most HRV
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publications, the time lag value is not usually selected above 10 or 15.

Now, we may try to obtain an estimation of the embedding dimension (see Figure

6.14). The optimum embedding dimension is 12.

> kEmbeddingDim = CalculateEmbeddingDim(hrv.data,

+ numberPoints = 10000,

+ timeLag = kTimeLag,

+ maxEmbeddingDim = 18)

--- Calculating optimum embedding dimension ---
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Figure 6.14: Automatic estimation of the embedding dimension.
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6.2.1 Nonlinear noise reduction

Since the RR intervals are derived from an ECG, the RR time series may suffer

from discretization problems. If the ECG was discretized very coarsely, many RR

intervals shall have the same value. Thus, there will be several identical points in

phase space, which may bias the nonlinear algorithms. RHRV provides functionality

that addresses those situations in which the ECG was discretized very coarsely. In

order to deal with the discretization problem of the RR time series, RHRV provides

the NonLinearNoiseReduction function. This function adds uniform white noise of

a magnitude equal to the resolution of the RR intervals. If the ECG from which

the RR intervals were derived was sampled at fs Hz, uniform [−0.5, 0.5]/fs white

noise is added. Then, a nonlinear noise reduction algorithm is applied. The noise

reduction algorithm performs noise reduction by averaging each Takens’ vector in

an m-dimensional space with his neighbours (time lag=1). Each neighbourhood is

specified with balls of a given radius (max norm is used). Although this procedure

will certainly not solve the discretization problem, it will alleviate it:

> hrv.data = NonLinearNoiseReduction(hrv.data,

+ embeddingDim = kEmbeddingDim)

** Denoising RR time series using nonlinear techniques **

** Calculating non-interpolated heart rate **

Number of beats: 2434
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Additional parameters for the NonLinearNoiseReduction function are ECGsam-

plingFreq : the ECG sampling frequency (optional, but it can improve the perfor-

mance of the algorithm if provided) and radius : the radius used to looking for

neighbours in the phase space.

6.2.2 Generalized correlation dimensions

Section 6.1.3.1 presented the CalculateCorrDim, EstimateCorrDim and PlotCor-

rDim functions for computing the correlation dimension of an RR time series. These

functions can also be used for computing the generalized correlation dimension. The

user only has to specify the order of the correlation dimension with the corrOrder

parameter in the CalculateCorrDim (the default value is 2, the correlation dimen-

sion). The order must fulfill corrOrder > 1. The generalized correlation dimension

of order q = 1 is known as the information dimension, that is computed with the

CalculateInfDim function (see Section 6.2.3).

As a quick example, we will try to calculate the correlation dimension of order 4 for

our new hrv.data. Figures 6.15 and 6.16 shows the results of the correlation sum

computation and the estimation, respectively.

> hrv.data = CreateNonLinearAnalysis(hrv.data)

** Creating non linear analysis

Data has now 2 nonlinear analysis
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> my.index = 1

> hrv.data = CalculateCorrDim(hrv.data,

+ indexNonLinearAnalysis = my.index,

+ minEmbeddingDim = kEmbeddingDim - 2,

+ maxEmbeddingDim = kEmbeddingDim + 2,

+ timeLag = kTimeLag, minRadius = 1,

+ maxRadius = 200, pointsRadius = 100,

+ theilerWindow = 200, doPlot = TRUE,

+ corrOrder = 4)

--- Computing the generalized Correlation sum of order 4 ---

> hrv.data = EstimateCorrDim(hrv.data, indexNonLinearAnalysis = 1,

+ regressionRange=c(3*10^5,9*10^5),

+ useEmbeddings = 13:14)

--- Estimating the generalized Correlation dimension of order 4 ---

--- Generalized Correlation dimension of order 4 = 8.585802 ---

>

6.2.3 Information dimension

As seen in Section 2.2.3.4 the information dimension is a particular case of the gen-

eralized correlation dimension when setting the order q = 1. In the RHRV package,
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Figure 6.15: Generalized correlation dimension computations.

the information dimension is computed using the CalculateInfDim, EstimateInfDim

and PlotInfDim.

Since the EstimateInfDim and PlotInfDim are analogous to the EstimateCorrDim

and PlotCorrDim functions, we shall only review the CalculateInfDim function.
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Figure 6.16: Generalized correlation dimension estimation.

In Section 2.2.3.4 we introduced the method for estimating the information dimen-

sion in practical applications. This algorithm looks for the scaling behaviour of the

average radius that contains a given portion (a ”fixed-mass”) of the total points in

the phase space. By performing a linear regression of log(p) V s. log(< r >) (being

p the fixed-mass of the total points), an estimate of the information dimension (D1)

is obtained.

It must be noted that the calculations for the information dimension are heavier

than those needed for the correlation dimension. However, the user should run the

method for different embedding dimensions to check if D1 saturates.

138



6.2. ADVANCED NONLINEAR ANALYSIS TECHNIQUES

> my.index = 1

> hrv.data = CalculateInfDim(hrv.data,

+ indexNonLinearAnalysis=my.index,

+ minEmbeddingDim=kEmbeddingDim-1,

+ maxEmbeddingDim=kEmbeddingDim+1,

+ timeLag=kTimeLag,

+ minFixedMass=2*10^-3,maxFixedMass=0.25,

+ numberFixedMassPoints=10,

+ radius=0.8,increasingRadiusFactor=1.05,

+ numberPoints=500, theilerWindow=200,

+ doPlot=TRUE)

--- Computing the Information dimension ---

Figure 6.17 shows < log p(r) > Vs. log(r) as obtained from the CalculateInfDim

function. As usual, we may use the Estimate function (EstimateInfDim function) in

order to obtain the estimation and then accessing it using $ under the statistic field.

> hrv.data = EstimateInfDim(hrv.data,

+ indexNonLinearAnalysis=my.index,

+ regressionRange=c(0.0025,0.100),

+ useEmbeddings = (kEmbeddingDim-1):(kEmbeddingDim+1),

+ doPlot=TRUE)
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Figure 6.17: Information dimension computations in RHRV.

--- Estimating the information dimension ---

--- Information dimension = 6.945107 ---

> # Let's print again the value of the information dimension!

> cat("The information dimension is ",

+ hrv.data$NonLinearAnalysis[[my.index]]$infDim$statistic,"\n")

The information dimension is 6.945107
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Figure 6.18 shows the regression performed for obtaining the estimate of the infor-

mation dimension.
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Figure 6.18: Information dimension estimation.

6.2.4 Poincaré Plot

The PoincarePlot function implements all the functionality for performing Poincaré

plot analysis, whether you employ the “classic” calculation methods or those based

on confidence regions (see Section 2.2.3.9).
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In order to compute the “classic”SD1 and SD2 parameters in the Poincaré plot, the

most important arguments of the RHRV routine are the timeLag (τ , that must be

setted to 1) and doPlot (if TRUE, the Poincaré plot is shown). The following lines

illustrate the use of this function. The resulting Poincaré plot is shown in Figure 6.19.

> # Set timeLag = 1 to obtain the "classic" Poincare parameters

> hrv.data = PoincarePlot(hrv.data,

+ indexNonLinearAnalysis=1,

+ timeLag=1, doPlot=TRUE)

--- Calculating SD1 and SD2 parameters ---

--- Creating Poincare Plot with time lag = 1 ---

--- SD1 = 3.284373 ---

--- SD2 = 7.931162 ---

Figure 6.19 shows the resulting Poincaré plot. RHRV also provides functionality for

fitting the ellipse (and computing both SD1 and SD2 parameters) using the theory

of the confidence regions. In order to enable the confidence region estimation the

user can set confidenceEstimation = TRUE. The confidence level can be selected

with the confidence parameter (default value is 0.95). It must be noted that when

timeLag > 1, the confidence region approach is always used.

Figure 6.20 shows the result of applying the following piece of code:

> hrv.data = CreateNonLinearAnalysis(hrv.data)

142



6.2. ADVANCED NONLINEAR ANALYSIS TECHNIQUES

50 60 70 80

50
60

70
80

Poincare plot

RR[n]

R
R

[n
+

1]

SD1
SD2

Figure 6.19: “Classic” Poincaré Plot.

** Creating non linear analysis

Data has now 3 nonlinear analysis

> hrv.data = PoincarePlot(hrv.data,

+ indexNonLinearAnalysis=2,

+ timeLag=1, confidenceEstimation = TRUE,
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+ confidence = 0.9,

+ doPlot=TRUE)

--- Calculating SD1 and SD2 parameters ---

--- Creating Poincare Plot with time lag = 1 ---

--- SD1 = 7.048153 ---

--- SD2 = 17.01799 ---

The SD1 and SD2 parameters are stored under the PoincarePlot list of the NonLin-

earAnalysis. Of coruse, they can be accessed as usual:

> # results of the first fit ...

> print(hrv.data$NonLinearAnalysis[[1]]$PoincarePlot)

$SD1

[1] 3.284373

$SD2

[1] 7.931162

> # ... vs results of the second one

> print(hrv.data$NonLinearAnalysis[[2]]$PoincarePlot)

$SD1

[1] 7.048153

$SD2

[1] 17.01799
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Figure 6.20: Poincaré Plot using the confidence region estimation.
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